Implementing a Superimposition and Measurement Model for 3D Sagittal Analysis of Therapy-induced Changes in Facial Soft Tissue: a Pilot Study

Aim:3D digital surface photogrammetry is an objective means of documenting the quantitative evaluation of facial morphology. However, there are no standardized superimposition and measurement systems for surveying soft tissue changes. The aim of this study was to present a superimposition and measurement model for three-dimensional analysis of therapy-induced sagittal changes in facial soft tissue and to ascertain its applicability based on the reproducibility of 3D landmark positions.Patients and Method:Twenty-nine children were examined (eight with cleft lip and palate, six with cleft palate, eight with Class III malocclusion and seven healthy controls, between 4.1 and 6.4 years). The mean time between examinations was 8.2 months for the patients and 8 months for the control group. Data was acquired with the DSP 400©imaging system. A mathematical model with seven superimposition points was developed. Two 3D images, one at the beginning and the other at the end of the examination, were generated. Both images were superimposed ten times. Ten landmarks for evaluating the soft tissue changes were geometrically defined on the superimposition image, put in place ten times, and measured. The landmarks’ reproducibility was calculated via statistical intraoperator analysis. Measurement error was identified using the root mean square error (RMSE).Results:The superimposition points were easy to locate and the landmarks well definable. All midface landmarks proved to be highly reproducible with an RMSE under 0.50 mm. The lower face landmarks demonstrated good reproducibility with an RMSE under 1 mm. The midface landmarks’ precision fell below the range of accuracy, while the lower face landmarks’ precision fell within the optoelectronic scanner device’s range of accuracy (0.50–1 mm).Conclusions:As an accurate, non-invasive, millisecond-fast, non-ionizing and ad infinitum repeatable procedure, 3D digital surface photogrammetry is very well suited for clinical and scientific application in orthodontics. We developed a reliable superimposition and measurement model with 3D digital surface photogrammetry. This new capturing and measurement system provides a simple means of determining 3D changes in facial soft tissue. Our landmarks proved to be highly reproducible for the midface while revealing good reproducibility for the lower face.ZusammenfassungZiel:Die digitale 3D-Oberflächenphotogrammetrie stellt ein objektives Verfahren dar, um die Gesichtsmorphologie quantitativ zu erfassen. Standardisierte Überlagerungs- und Auswertungsmodelle zur Vermessung von Weichteilveränderungen fehlen jedoch. Ziel dieser Studie war es, ein Überlagerungs- und Auswertungsmodell zur dreidimensionalen Analyse von therapiebedingten sagittalen Gesichtsweichteilveränderungen zu entwickeln und dessen Anwendbarkeit anhand der Reproduzierbarkeit der 3D-Landmarkenpositionierung zu überprüfen.Patienten und Methodik:Es wurden 29 Kinder, acht mit LKGSpalten, sechs mit Gaumenspalten, acht mit Klasse-III-Anomalien und sieben gesunden Kontrollen, zwischen 4,1 und 6,4 Jahren untersucht. Das Untersuchungsintervall betrug 8,2 Monate für die Patienten und 8 Monate für die Kontrolle. Die Datenakquisition erfolgte mit dem DSP-400©-System. Es wurde eine mathematische Konstruktion mit sieben Überlagerungspunkten entwickelt. Zwei 3D-Bilder, zum Untersuchungsbeginn und Untersuchungsende, wurden generiert und zehnfach überlagert. Auf dem Überlagerungssummenbild wurden zehn Messpunkte zur Erfassung der Weichgewebeveränderungen geometrisch bestimmt, zehnfach platziert und vermessen. Die Reproduzierbarkeit der Messpunkte wurde mit einer statistischen Intraoperatoranalyse überprüft. Der Messfehler wurde mit dem „Root Mean Square Error“ (RMSE) berechnet.Ergebnisse:Die Überlagerungspunkte ließen sich gut auffinden und die Messpunkte im Anschluss gut definieren. Alle Mittelgesichtspunkte zeigten eine hohe Reproduzierbarkeit mit einem RMSE kleiner als 0,50 mm. Die Untergesichtspunkte waren mit einem RMSE kleiner als 1 mm gut reproduzierbar. Die ermittelte Präzision der Mittelgesichtspunkte lag somit unterhalb und die der Untergesichtspunkte innerhalb der Genauigkeit des optoelektronischen Scanners (0,50–1 mm).Schlussfolgerungen:Als genaues, nichtinvasives, millisekundenschnelles, strahlenfreies und ad infinitum wiederholbares Verfahren ist die digitale 3D-Oberflächenphotogrammetrie sehr gut für den klinischen und wissenschaftlichen Einsatz in der Kieferorthopädie geeignet. Ein zuverlässiges Überlagerungs- und Auswertungssystem konnte mit der angewandten digitalen 3D-Oberflächenphotogrammetrie eingeführt werden. Es handelt sich um eine einfache Methode, faziale Weichteilveränderungen zu ermitteln. Die Messpunkte zeigten eine hohe (Mittelgesichtsbereich) bis gute (Untergesichtsbereich) Reproduzierbarkeit.

[1]  M Motoyoshi,et al.  Finite element model of facial soft tissue. Effects of thickness and stiffness on changes following simulation of orthognathic surgery. , 1993, The Journal of Nihon University School of Dentistry.

[2]  G. Salemi,et al.  A photogrammetric technique for the analysis of palatal three-dimensional changes during rapid maxillary expansion. , 2007, European journal of orthodontics.

[3]  Qiong Han,et al.  Three-dimensional facial imaging: accuracy and considerations for clinical applications in orthodontics. , 2004, The Angle orthodontist.

[4]  R. A. Jacobs Three-dimensional photography. , 2001, Plastic and reconstructive surgery.

[5]  D. Morris,et al.  Visualizing three-dimensional facial soft tissue changes following orthognathic surgery. , 2007, European journal of orthodontics.

[6]  Mary L Marazita,et al.  Digital Three-Dimensional Photogrammetry: Evaluation of Anthropometric Precision and Accuracy Using a Genex 3D Camera System , 2004, The Cleft palate-craniofacial journal : official publication of the American Cleft Palate-Craniofacial Association.

[7]  R. T. Lee,et al.  A prospective evaluation of Bass, Bionator and Twin Block appliances. Part II--The soft tissues. , 1998, European journal of orthodontics.

[8]  C. A. Hood,et al.  Facial Characterization of Infants with Cleft Lip and Palate Using a Three-Dimensional Capture Technique , 2004, The Cleft palate-craniofacial journal : official publication of the American Cleft Palate-Craniofacial Association.

[9]  R. Nanda,et al.  Three-dimensional facial analysis using a video imaging system. , 1996, The Angle orthodontist.

[10]  D. Poswillo Myths, masks and mechanisms of facial deformity , 1989 .

[11]  L. Farkas Anthropometry of the head and face , 1994 .

[12]  A. Coombes,et al.  A mathematical method for the comparison of three-dimensional changes in the facial surface. , 1991, European journal of orthodontics.

[13]  N Natsume,et al.  Three-dimensional analysis of facial morphology using moiré stripes. Part I. Method. , 1990, International journal of oral and maxillofacial surgery.

[14]  F. H. Beard,et al.  Stereophotogrammetry of the face. A preliminary investigation into the accuracy of a simplified system evolved for contour mapping by photography. , 1967, American journal of orthodontics.

[15]  M. Schuster,et al.  Determination of Facial Symmetry in Unilateral Cleft Lip and Palate Patients from Three-Dimensional Data: Technical Report and Assessment of Measurement Errors , 2006, The Cleft palate-craniofacial journal : official publication of the American Cleft Palate-Craniofacial Association.

[16]  Tim Hutton,et al.  Reproducibility of soft tissue landmarks on three-dimensional facial scans. , 2006, European journal of orthodontics.

[17]  O M Antonyshyn,et al.  Facial asymmetry: three-dimensional analysis using laser surface scanning. , 1999, Plastic and reconstructive surgery.

[18]  C B Cutting,et al.  Three-dimensional Input of Body Surface Data Using a Laser Light Scanner , 1988, Annals of plastic surgery.

[19]  Mohammad Y Hajeer,et al.  Three-dimensional imaging in orthognathic surgery: the clinical application of a new method. , 2002, The International journal of adult orthodontics and orthognathic surgery.

[20]  F C van Ginkel,et al.  Quantification of facial morphology using stereophotogrammetry--demonstration of a new concept. , 1996, Journal of dentistry.

[21]  Murat Soncul,et al.  Evaluation of facial soft tissue changes with optical surface scan after surgical correction of Class III deformities. , 2004, Journal of oral and maxillofacial surgery : official journal of the American Association of Oral and Maxillofacial Surgeons.

[22]  Christof Holberg,et al.  Three-Dimensional Soft Tissue Prediction Using Finite Elements , 2005, Journal of Orofacial Orthopedics / Fortschritte der Kieferorthopädie.

[23]  S R Arridge,et al.  Three-dimensional visualization of the face and skull using computerized tomography and laser scanning techniques. , 1987, European Journal of Orthodontics.

[24]  W. Larrabee,et al.  Update in three-dimensional imaging in facial plastic surgery , 2004, Current opinion in otolaryngology & head and neck surgery.

[25]  A D Linney,et al.  A three-dimensional soft tissue analysis of 16 skeletal class III patients following bimaxillary surgery. , 1992, The British journal of oral & maxillofacial surgery.

[26]  Birdsall Holly Sr Broadbent,et al.  Bolton standards of dentofacial developmental growth , 1975 .

[27]  W R Fright,et al.  A three-dimensional soft tissue analysis of fifteen patients with Class II, Division 1 malocclusions after bimaxillary surgery. , 1994, American journal of orthodontics and dentofacial orthopedics : official publication of the American Association of Orthodontists, its constituent societies, and the American Board of Orthodontics.

[28]  A. Ayoub,et al.  A New Three-Dimensional Method of Assessing Facial Volumetric Changes after Orthognathic Treatment , 2005, The Cleft palate-craniofacial journal : official publication of the American Cleft Palate-Craniofacial Association.

[29]  Masahiko Terajima,et al.  Three-dimensional computer-generated head model reconstructed from cephalograms, facial photographs, and dental cast models. , 2005, American journal of orthodontics and dentofacial orthopedics : official publication of the American Association of Orthodontists, its constituent societies, and the American Board of Orthodontics.

[30]  A. Linney,et al.  Three-dimensional analysis techniques--Part 4: Three-dimensional analysis of bone and soft tissue to bone ratio of movements in 24 cleft palate patients following Le Fort I osteotomy: a preliminary report. , 1997, The Cleft palate-craniofacial journal : official publication of the American Cleft Palate-Craniofacial Association.

[31]  R. Evans,et al.  Three-dimensional analysis of the child cleft face. , 2000, The Cleft palate-craniofacial journal : official publication of the American Cleft Palate-Craniofacial Association.

[32]  Gunnar Dahlberg Statistical Methods for Medical and Biological Students. , 1941 .

[33]  W R Fright,et al.  Three-dimensional analysis techniques--Part 2: Laser scanning: a quantitative three-dimensional soft-tissue analysis using a color-coding system. , 1997, The Cleft palate-craniofacial journal : official publication of the American Cleft Palate-Craniofacial Association.

[34]  P. Wisth Changes of the soft tissue profile during growth. , 2007, Transactions. European Orthodontic Society.

[35]  R. T. Lee,et al.  A prospective evaluation of Bass, Bionator and Twin Block appliances. Part I--The hard tissues. , 1998, European journal of orthodontics.

[36]  A. J. Haas THE TREATMENT OF MAXILLARY DEFICIENCY BY OPENING THE MIDPALATAL SUTURE. , 1965, The Angle orthodontist.

[37]  B. Prahl-Andersen,et al.  Longitudinal Study on Three-Dimensional Changes of Facial Asymmetry in Children between 4 to 12 Years of Age with Unilateral Cleft Lip and Palate , 1995 .

[38]  G. Dahlberg,et al.  Statistical Methods for Medical and Biological Students , 1941, The Indian Medical Gazette.

[39]  Chiarella Sforza,et al.  A Quantitative Three-Dimensional Assessment of Soft Tissue Facial Asymmetry of Cleft Lip and Palate Adult Patients , 2003, The Journal of craniofacial surgery.

[40]  J. P. Moss,et al.  The three-dimensional effects of orthodontic treatment on the facial soft tissues – a preliminary study. , 2002, British Dental Journal.

[41]  R. Evans,et al.  Three-Dimensional Analysis of the Child Cleft Face , 2000 .

[42]  J. Cuzzi,et al.  Biostereometric analysis of surgically corrected abnormal faces. , 1977, American journal of orthodontics.

[43]  F L Bookstein,et al.  The three-dimensional cephalogram: theory, technique, and clinical application. , 1988, American journal of orthodontics and dentofacial orthopedics : official publication of the American Association of Orthodontists, its constituent societies, and the American Board of Orthodontics.

[44]  M Sakuda,et al.  Rapid three-dimensional measuring system for facial surface structure. , 1998, Plastic and reconstructive surgery.

[45]  V F Ferrario,et al.  A three-dimensional computerized mesh diagram analysis and its application in soft tissue facial morphometry. , 1998, American journal of orthodontics and dentofacial orthopedics : official publication of the American Association of Orthodontists, its constituent societies, and the American Board of Orthodontics.

[46]  M Krimmel,et al.  Bewertung von Präzision und Genauigkeit der digitalen Oberflächenphotogrammetrie mit dem DSP 400 System / Assessment of Precision and Accuracy of Digital Surface Photogrammetry with the DSP 400 System , 2005, Biomedizinische Technik. Biomedical engineering.

[47]  Alf D. Linney,et al.  Three-Dimensional Analysis Techniques—Part 3: Color-Coded System for Three-Dimensional Measurement of Bone and Ratio of Soft Tissue to Bone: The Analysis , 1997 .

[48]  F C van Ginkel,et al.  Three-dimensional evaluation of facial asymmetry in cleft lip and palate. , 1994, The Cleft palate-craniofacial journal : official publication of the American Cleft Palate-Craniofacial Association.

[49]  C Surwald,et al.  [Initial experiences with digital 3-dimensional stereophotogrammetry imaging]. , 2000, Mund-, Kiefer- und Gesichtschirurgie : MKG.

[50]  W J Houston,et al.  The analysis of errors in orthodontic measurements. , 1983, American journal of orthodontics.

[51]  D J Halazonetis,et al.  Acquisition of 3-dimensional shapes from images. , 2001, American journal of orthodontics and dentofacial orthopedics : official publication of the American Association of Orthodontists, its constituent societies, and the American Board of Orthodontics.

[52]  B. Hell 3D sonography. , 1995, International journal of oral and maxillofacial surgery.

[53]  A. Linney,et al.  Three-Dimensional Analysis Techniques—Part 1: Three-Dimensional Soft-Tissue Analysis of 24 Adult Cleft Palate Patients following Le Fort I Maxillary Advancement: A Preliminary Report , 1997 .

[54]  Moss Jp The use of three-dimensional imaging in orthodontics. , 2006 .

[55]  Christopher J. Lux,et al.  Indications for Digital Volume Tomography in Orthodontics , 2005, Journal of Orofacial Orthopedics / Fortschritte der Kieferorthopädie.

[56]  F. Bookstein,et al.  The inappropriateness of conventional cephalometrics. , 1979, American journal of orthodontics.

[57]  Christof Holberg,et al.  Three-Dimensional Soft Tissue Prediction Using Finite Elements , 2005, Journal of Orofacial Orthopedics / Fortschritte der Kieferorthopädie.

[58]  V F Ferrario,et al.  Facial three-dimensional morphometry. , 1996, American journal of orthodontics and dentofacial orthopedics : official publication of the American Association of Orthodontists, its constituent societies, and the American Board of Orthodontics.