Chapter 8 – Reinforcement of Elastomers by Particulate Fillers

[1]  A. Sircar,et al.  Immobilization of Elastomers at the Carbon Black Particle Surface , 1970 .

[2]  A. R. Payne,et al.  Hysteresis and strength of rubbers , 1968 .

[3]  L. Mullins,et al.  Stress softening in rubber vulcanizates. Part I. Use of a strain amplification factor to describe the elastic behavior of filler‐reinforced vulcanized rubber , 1965 .

[4]  W. Slichter,et al.  Nuclear magnetic resonance study of rubber–carbon black interactions , 1971 .

[5]  W. Smith,et al.  Structure and Properties of Carbon Black - Changes Induced by Heat Treatment , 1953 .

[6]  E. Guth,et al.  Untersuchungen über die Viskosität von Suspensionen und Lösungen. 3. Über die Viskosität von Kugelsuspensionen , 1936 .

[7]  Avrom I. Medalia,et al.  Morphology of aggregates , 1967 .

[8]  J. Radok,et al.  A theory of inclusions in viscoelastic materials , 1962 .

[9]  L. Mullins Softening of Rubber by Deformation , 1969 .

[10]  W. M. Hess,et al.  Specific Shape Characterization of Carbon Black Primary Units , 1973 .

[11]  A General Correlation Between Treadwear and Carbon Black Properties , 1974 .

[12]  A. R. Payne Dynamic properties of heat‐treated butyl vulcanizates , 1963 .

[13]  P. B. Stickney,et al.  Carbon Black-Rubber Interactions and Bound Rubber , 1964 .

[14]  L. Richards,et al.  Tinting strength of carbon black , 1972 .

[15]  M. P. Wagner,et al.  Fine Particle Reinforcing Silicas and Silicates in Elastomers , 1959 .

[16]  M. Porter Structural Characterization of Filled Vulcanizates Part 1. Determination of the Concentration of Chemical Crosslinks in Natural Rubber Vulcanizates Containing High Abrasion Furnace Black , 1967 .

[17]  A. Medalia Elastic Modulus of Vulcanizates as Related to Carbon Black Structure , 1973 .

[18]  W. M. Hess,et al.  New Studies of Carbon—Rubber Gel , 1974 .

[19]  D. Rivin Use of Lithium Aluminum Hydride in the Study of Surface Chemistry of Carbon Black , 1963 .

[20]  G. Kraus,et al.  Interactions of Elastomers and Reinforcing Fillers , 1965 .

[21]  F. Bueche Molecular basis for the mullins effect , 1960 .

[22]  F. A. Heckman,et al.  Morphology of aggregates: VII. Comparison chart method for electron microscopic determination of carbon black aggregate morphology , 1971 .

[23]  G. Kraus A structure — concentration equivalence principle in carbon black reinforcement of elastomers , 1970 .

[24]  F. Bueche,et al.  Mullins effect and rubber–filler interaction† , 1961 .

[25]  G. Kraus,et al.  Thermal expansion, free volume, and molecular mobility in a carbon black-filled elastomer , 1970 .

[26]  W. M. Hess,et al.  Carbon Black Morphology: I. Particle Microstructure. II. Automated EM Analysis of Aggregate Size and Shape , 1969 .

[27]  H. M. Smallwood Limiting Law of the Reinforcement of Rubber , 1944 .

[28]  A. Medalia Morphology of aggregates: VI. Effective volume of aggregates of carbon black from electron microscopy; Application to vehicle absorption and to die swell of filled rubber , 1970 .

[29]  D. Rivin,et al.  Bonding of Rubber to Carbon Black by Sulfur Vulcanization , 1968 .

[30]  J. Brennan,et al.  Strain Energy as a Criterion for Stress Softening in Carbon-Black-Filled Vulcanizates , 1966 .

[31]  J. Brennan,et al.  Carbon black–polymer interaction: A measure of reinforcement , 1964 .

[32]  Reinforcement of elastomers by carbon black , 1971 .

[33]  A. Gent Energy dissipation in stretching filled rubbers , 1974 .