Chapter 8 – Reinforcement of Elastomers by Particulate Fillers
暂无分享,去创建一个
[1] A. Sircar,et al. Immobilization of Elastomers at the Carbon Black Particle Surface , 1970 .
[2] A. R. Payne,et al. Hysteresis and strength of rubbers , 1968 .
[3] L. Mullins,et al. Stress softening in rubber vulcanizates. Part I. Use of a strain amplification factor to describe the elastic behavior of filler‐reinforced vulcanized rubber , 1965 .
[4] W. Slichter,et al. Nuclear magnetic resonance study of rubber–carbon black interactions , 1971 .
[5] W. Smith,et al. Structure and Properties of Carbon Black - Changes Induced by Heat Treatment , 1953 .
[6] E. Guth,et al. Untersuchungen über die Viskosität von Suspensionen und Lösungen. 3. Über die Viskosität von Kugelsuspensionen , 1936 .
[7] Avrom I. Medalia,et al. Morphology of aggregates , 1967 .
[8] J. Radok,et al. A theory of inclusions in viscoelastic materials , 1962 .
[9] L. Mullins. Softening of Rubber by Deformation , 1969 .
[10] W. M. Hess,et al. Specific Shape Characterization of Carbon Black Primary Units , 1973 .
[11] A General Correlation Between Treadwear and Carbon Black Properties , 1974 .
[12] A. R. Payne. Dynamic properties of heat‐treated butyl vulcanizates , 1963 .
[13] P. B. Stickney,et al. Carbon Black-Rubber Interactions and Bound Rubber , 1964 .
[14] L. Richards,et al. Tinting strength of carbon black , 1972 .
[15] M. P. Wagner,et al. Fine Particle Reinforcing Silicas and Silicates in Elastomers , 1959 .
[16] M. Porter. Structural Characterization of Filled Vulcanizates Part 1. Determination of the Concentration of Chemical Crosslinks in Natural Rubber Vulcanizates Containing High Abrasion Furnace Black , 1967 .
[17] A. Medalia. Elastic Modulus of Vulcanizates as Related to Carbon Black Structure , 1973 .
[18] W. M. Hess,et al. New Studies of Carbon—Rubber Gel , 1974 .
[19] D. Rivin. Use of Lithium Aluminum Hydride in the Study of Surface Chemistry of Carbon Black , 1963 .
[20] G. Kraus,et al. Interactions of Elastomers and Reinforcing Fillers , 1965 .
[21] F. Bueche. Molecular basis for the mullins effect , 1960 .
[22] F. A. Heckman,et al. Morphology of aggregates: VII. Comparison chart method for electron microscopic determination of carbon black aggregate morphology , 1971 .
[23] G. Kraus. A structure — concentration equivalence principle in carbon black reinforcement of elastomers , 1970 .
[24] F. Bueche,et al. Mullins effect and rubber–filler interaction† , 1961 .
[25] G. Kraus,et al. Thermal expansion, free volume, and molecular mobility in a carbon black-filled elastomer , 1970 .
[26] W. M. Hess,et al. Carbon Black Morphology: I. Particle Microstructure. II. Automated EM Analysis of Aggregate Size and Shape , 1969 .
[27] H. M. Smallwood. Limiting Law of the Reinforcement of Rubber , 1944 .
[28] A. Medalia. Morphology of aggregates: VI. Effective volume of aggregates of carbon black from electron microscopy; Application to vehicle absorption and to die swell of filled rubber , 1970 .
[29] D. Rivin,et al. Bonding of Rubber to Carbon Black by Sulfur Vulcanization , 1968 .
[30] J. Brennan,et al. Strain Energy as a Criterion for Stress Softening in Carbon-Black-Filled Vulcanizates , 1966 .
[31] J. Brennan,et al. Carbon black–polymer interaction: A measure of reinforcement , 1964 .
[32] Reinforcement of elastomers by carbon black , 1971 .
[33] A. Gent. Energy dissipation in stretching filled rubbers , 1974 .