On some advanced type inequalities for Sugeno integral and T-(S-)evaluators

In this paper strengthened versions of the Minkowski, Chebyshev, Jensen and Holder inequalities for Sugeno integral and T-(S-)evaluators are given. As an application, some equivalent forms and some particular results have been established.

[1]  A. Flores-Franulic,et al.  The fuzzy integral for monotone functions , 2007, Appl. Math. Comput..

[2]  G. Klir,et al.  Fuzzy Measure Theory , 1993 .

[3]  Radko Mesiar,et al.  Sugeno Integral and the Comonotone Commuting Property , 2009, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[4]  Radko Mesiar,et al.  On the Chebyshev type inequality for seminormed fuzzy integral , 2009, Appl. Math. Lett..

[5]  Radko Mesiar,et al.  Measure-based aggregation operators , 2004, Fuzzy Sets Syst..

[6]  A. Flores-Franulic,et al.  A Chebyshev type inequality for fuzzy integrals , 2007, Appl. Math. Comput..

[7]  Umut Mutlu Özkan,et al.  Extensions of certain integral inequalities on time scales , 2008, Appl. Math. Lett..

[8]  Da Ruan,et al.  Choquet integral based aggregation approach to software development risk assessment , 2010, Inf. Sci..

[9]  Gregory T. Adams,et al.  The fuzzy integral , 1980 .

[10]  Jun Li,et al.  On the comonotonic-*-property for Sugeno integral , 2009, Appl. Math. Comput..

[11]  Yurilev Chalco-Cano,et al.  Sugeno Integral and Geometric Inequalities , 2007, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[12]  Radko Mesiar,et al.  Berwald type inequality for Sugeno integral , 2010, Appl. Math. Comput..

[13]  Radko Mesiar,et al.  General Chebyshev type inequalities for Sugeno integrals , 2009, Fuzzy Sets Syst..

[14]  Radko Mesiar,et al.  General Minkowski type inequalities for Sugeno integrals , 2010, Fuzzy Sets Syst..

[15]  Didier Dubois,et al.  Qualitative Decision Theory with Sugeno Integrals , 1998, UAI.

[16]  Lotfi A. Zadeh,et al.  Please Scroll down for Article International Journal of General Systems Fuzzy Sets and Systems* Fuzzy Sets and Systems* , 2022 .

[17]  Radko Mesiar,et al.  Fuzzy integrals and linearity , 2008, Int. J. Approx. Reason..

[18]  菅野 道夫,et al.  Theory of fuzzy integrals and its applications , 1975 .

[19]  B. C. Brookes,et al.  Information Sciences , 2020, Cognitive Skills You Need for the 21st Century.

[20]  Yao Ouyang,et al.  Sugeno integral of monotone functions based on Lebesgue measure , 2008, Comput. Math. Appl..

[21]  Yurilev Chalco-Cano,et al.  H-continuity of fuzzy measures and set defuzzification , 2006, Fuzzy Sets Syst..

[22]  R. Mesiar,et al.  ”Aggregation Functions”, Cambridge University Press , 2008, 2008 6th International Symposium on Intelligent Systems and Informatics.

[23]  Patricia Melin,et al.  A hybrid approach for image recognition combining type-2 fuzzy logic, modular neural networks and the Sugeno integral , 2009, Inf. Sci..

[24]  A. Flores-Franulic,et al.  A Jensen type inequality for fuzzy integrals , 2007, Inf. Sci..

[25]  Radko Mesiar,et al.  Further development of Chebyshev type inequalities for Sugeno integrals and T-(S-)evaluators , 2010, Kybernetika.

[26]  Radko Mesiar,et al.  An inequality related to Minkowski type for Sugeno integrals , 2010, Inf. Sci..

[27]  Radko Mesiar,et al.  New general extensions of Chebyshev type inequalities for Sugeno integrals , 2009, Int. J. Approx. Reason..

[28]  Yao Ouyang,et al.  Fuzzy Chebyshev type inequality , 2008, Int. J. Approx. Reason..

[29]  Radko Mesiar,et al.  Triangular Norms , 2000, Trends in Logic.

[30]  Didier Dubois,et al.  The Use of the Discrete Sugeno Integral in Decision-Making: A Survey , 2001, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[31]  R. Mesiar,et al.  Aggregation Functions: Aggregation on ordinal scales , 2009 .

[32]  E. Pap Null-Additive Set Functions , 1995 .

[33]  Martin Kalina,et al.  T-evaluators and S-evaluators , 2009, Fuzzy Sets Syst..