On some advanced type inequalities for Sugeno integral and T-(S-)evaluators
暂无分享,去创建一个
[1] A. Flores-Franulic,et al. The fuzzy integral for monotone functions , 2007, Appl. Math. Comput..
[2] G. Klir,et al. Fuzzy Measure Theory , 1993 .
[3] Radko Mesiar,et al. Sugeno Integral and the Comonotone Commuting Property , 2009, Int. J. Uncertain. Fuzziness Knowl. Based Syst..
[4] Radko Mesiar,et al. On the Chebyshev type inequality for seminormed fuzzy integral , 2009, Appl. Math. Lett..
[5] Radko Mesiar,et al. Measure-based aggregation operators , 2004, Fuzzy Sets Syst..
[6] A. Flores-Franulic,et al. A Chebyshev type inequality for fuzzy integrals , 2007, Appl. Math. Comput..
[7] Umut Mutlu Özkan,et al. Extensions of certain integral inequalities on time scales , 2008, Appl. Math. Lett..
[8] Da Ruan,et al. Choquet integral based aggregation approach to software development risk assessment , 2010, Inf. Sci..
[9] Gregory T. Adams,et al. The fuzzy integral , 1980 .
[10] Jun Li,et al. On the comonotonic-*-property for Sugeno integral , 2009, Appl. Math. Comput..
[11] Yurilev Chalco-Cano,et al. Sugeno Integral and Geometric Inequalities , 2007, Int. J. Uncertain. Fuzziness Knowl. Based Syst..
[12] Radko Mesiar,et al. Berwald type inequality for Sugeno integral , 2010, Appl. Math. Comput..
[13] Radko Mesiar,et al. General Chebyshev type inequalities for Sugeno integrals , 2009, Fuzzy Sets Syst..
[14] Radko Mesiar,et al. General Minkowski type inequalities for Sugeno integrals , 2010, Fuzzy Sets Syst..
[15] Didier Dubois,et al. Qualitative Decision Theory with Sugeno Integrals , 1998, UAI.
[16] Lotfi A. Zadeh,et al. Please Scroll down for Article International Journal of General Systems Fuzzy Sets and Systems* Fuzzy Sets and Systems* , 2022 .
[17] Radko Mesiar,et al. Fuzzy integrals and linearity , 2008, Int. J. Approx. Reason..
[18] 菅野 道夫,et al. Theory of fuzzy integrals and its applications , 1975 .
[19] B. C. Brookes,et al. Information Sciences , 2020, Cognitive Skills You Need for the 21st Century.
[20] Yao Ouyang,et al. Sugeno integral of monotone functions based on Lebesgue measure , 2008, Comput. Math. Appl..
[21] Yurilev Chalco-Cano,et al. H-continuity of fuzzy measures and set defuzzification , 2006, Fuzzy Sets Syst..
[22] R. Mesiar,et al. ”Aggregation Functions”, Cambridge University Press , 2008, 2008 6th International Symposium on Intelligent Systems and Informatics.
[23] Patricia Melin,et al. A hybrid approach for image recognition combining type-2 fuzzy logic, modular neural networks and the Sugeno integral , 2009, Inf. Sci..
[24] A. Flores-Franulic,et al. A Jensen type inequality for fuzzy integrals , 2007, Inf. Sci..
[25] Radko Mesiar,et al. Further development of Chebyshev type inequalities for Sugeno integrals and T-(S-)evaluators , 2010, Kybernetika.
[26] Radko Mesiar,et al. An inequality related to Minkowski type for Sugeno integrals , 2010, Inf. Sci..
[27] Radko Mesiar,et al. New general extensions of Chebyshev type inequalities for Sugeno integrals , 2009, Int. J. Approx. Reason..
[28] Yao Ouyang,et al. Fuzzy Chebyshev type inequality , 2008, Int. J. Approx. Reason..
[29] Radko Mesiar,et al. Triangular Norms , 2000, Trends in Logic.
[30] Didier Dubois,et al. The Use of the Discrete Sugeno Integral in Decision-Making: A Survey , 2001, Int. J. Uncertain. Fuzziness Knowl. Based Syst..
[31] R. Mesiar,et al. Aggregation Functions: Aggregation on ordinal scales , 2009 .
[32] E. Pap. Null-Additive Set Functions , 1995 .
[33] Martin Kalina,et al. T-evaluators and S-evaluators , 2009, Fuzzy Sets Syst..