Mathematical Biology

[1]  J. Sethian,et al.  Implementation of the level set method for continuum mechanics based tumor growth models , 2005 .

[2]  V. Cristini,et al.  Nonlinear simulation of tumor necrosis, neo-vascularization and tissue invasion via an adaptive finite-element/level-set method , 2005, Bulletin of mathematical biology.

[3]  Thomas S. Deisboeck,et al.  Simulating ‘structure–function’ patterns of malignant brain tumors , 2004 .

[4]  Luigi Preziosi,et al.  Cancer Modelling and Simulation , 2003 .

[5]  Helen M. Byrne,et al.  A two-phase model of solid tumour growth , 2003, Appl. Math. Lett..

[6]  V. Cristini,et al.  Nonlinear simulation of tumor growth , 2003, Journal of mathematical biology.

[7]  Ronald Fedkiw,et al.  Level set methods and dynamic implicit surfaces , 2002, Applied mathematical sciences.

[8]  L. Preziosi,et al.  Modelling Solid Tumor Growth Using the Theory of Mixtures , 2001, Mathematical medicine and biology : a journal of the IMA.

[9]  D. Calhoun A Cartesian Grid Method for Solving the Two-Dimensional Streamfunction-Vorticity Equations in Irregular Regions , 2002 .

[10]  J. Sethian Evolution, implementation, and application of level set and fast marching methods for advancing fronts , 2001 .

[11]  L. Preziosi,et al.  Modelling and mathematical problems related to tumor evolution and its interaction with the immune system , 2000 .

[12]  S Torquato,et al.  Simulated brain tumor growth dynamics using a three-dimensional cellular automaton. , 2000, Journal of theoretical biology.

[13]  L. Preziosi,et al.  ADVECTION-DIFFUSION MODELS FOR SOLID TUMOUR EVOLUTION IN VIVO AND RELATED FREE BOUNDARY PROBLEM , 2000 .

[14]  Dantzig,et al.  Computation of dendritic microstructures using a level set method , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[15]  James A. Sethian,et al.  Level Set Methods and Fast Marching Methods , 1999 .

[16]  James A. Sethian,et al.  The Fast Construction of Extension Velocities in Level Set Methods , 1999 .

[17]  S. Osher,et al.  A Simple Level Set Method for Solving Stefan Problems , 1997, Journal of Computational Physics.

[18]  Stanley Osher,et al.  A Hybrid Method for Moving Interface Problems with Application to the Hele-Shaw Flow , 1997 .

[19]  John A. Adam,et al.  General Aspects of Modeling Tumor Growth and Immune Response , 1997 .

[20]  M. Chaplain,et al.  Modelling the role of cell-cell adhesion in the growth and development of carcinomas , 1996 .

[21]  J A Sethian,et al.  A fast marching level set method for monotonically advancing fronts. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[22]  Wei Shyy,et al.  Computational Fluid Dynamics with Moving Boundaries , 1995 .

[23]  J. W. Thomas Numerical Partial Differential Equations: Finite Difference Methods , 1995 .

[24]  J. Sethian,et al.  A Fast Level Set Method for Propagating Interfaces , 1995 .

[25]  Baba C. Vemuri,et al.  Shape Modeling with Front Propagation: A Level Set Approach , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[26]  R. LeVeque,et al.  A comparison of the extended finite element method with the immersed interface method for elliptic equations with discontinuous coefficients and singular sources , 2006 .

[27]  D. Chopp Computing Minimal Surfaces via Level Set Curvature Flow , 1993 .

[28]  Chia-Ven Pao,et al.  Nonlinear parabolic and elliptic equations , 1993 .

[29]  J. Sethian,et al.  Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations , 1988 .

[30]  James A. Sethian,et al.  Numerical Methods for Propagating Fronts , 1987 .

[31]  J. Sethian Curvature and the evolution of fronts , 1985 .

[32]  G. Smith,et al.  Numerical Solution of Partial Differential Equations: Finite Difference Methods , 1978 .

[33]  J. Folkman The vascularization of tumors. , 1976, Scientific American.

[34]  R. D. Richtmyer,et al.  Difference methods for initial-value problems , 1959 .

[35]  Vasilios Alexiades,et al.  OVERCOMING THE STABILITY RESTRICTION OF EXPLICIT SCHEMES VIA SUPER-TIME-STEPPING , 2022 .