On wavefront sets of global Arthur packets of classical groups: Upper bound

We prove a conjecture of the first-named author ([J14]) on the upper bound Fourier coefficients of automorphic forms in Arthur packets of split classical groups over any number field.

[1]  D. Ginzburg Constructing automorphic representations in split classicalgroups , 2012 .

[2]  Chung Pang Mok Endoscopic classification of representations of quasi-split unitary groups , 2012, 1206.0882.

[3]  J. Shalika The Multiplicity One Theorem for GL n , 1974 .

[4]  Dihua Jiang,et al.  N T ] 2 3 D ec 2 01 4 FOURIER COEFFICIENTS FOR AUTOMORPHIC FORMS ON QUASISPLIT CLASSICAL GROUPS DIHUA JIANG , 2014 .

[5]  M. Tadi,et al.  Unramied Unitary Duals for Split Classical p{adic Groups; The topology and Isolated Representations , 2010 .

[6]  D. Barbasch,et al.  Unipotent representations of complex semisimple groups , 1985 .

[7]  Rui Chen,et al.  Theta Correspondence and Arthur packets , 2021, 2104.12354.

[8]  G. Muić On the non-unitary unramified dual for classical p-adic groups , 2006 .

[9]  I. Piatetski-Shapiro,et al.  L Functions for the Orthogonal Group , 1997 .

[10]  S. Sahi,et al.  Generalized and degenerate Whittaker models , 2015, Compositio Mathematica.

[11]  J. Waldspurger Intégrales orbitales nilpotentes et endoscopie pour les groupes classiques non ramifiés , 2001 .

[12]  B. Gross,et al.  Symplectic local root numbers, central critical L-values, and restriction problems in the representation theory of classical groups , 2009, 0909.2999.

[13]  M. Tadic Spherical unitary dual of general linear group over non-Archimidean local field , 1986 .

[14]  Dihua Jiang,et al.  On the nonvanishing of the central value of the Rankin-Selberg L-functions , 2004 .

[15]  Dihua Jiang,et al.  L-FUNCTIONS FOR SYMPLECTIC GROUPS USING FOURIER-JACOBI MODELS , 2009 .

[16]  D. Barbasch,et al.  On the Notion of Metaplectic Barbasch–Vogan Duality , 2020, International Mathematics Research Notices.

[17]  C. Mœglin,et al.  Modèles de Whittaker dégénérés pour des groupesp-adiques , 1987 .

[18]  N. Spaltenstein Classes unipotentes et sous-groupes de Borel , 1982 .

[19]  Rui Chen,et al.  Arthur's multiplicity formula for even orthogonal and unitary groups , 2021 .

[20]  Alberto Mínguez,et al.  Endoscopic Classification of Representations: Inner Forms of Unitary Groups , 2014, 1409.3731.

[21]  Ulrich Görtz James Arthur: “The Endoscopic Classification of Representations. Orthogonal and Symplectic Groups” , 2014, Jahresbericht der Deutschen Mathematiker-Vereinigung.

[22]  Emile Okada,et al.  Some Unipotent Arthur Packets for Reductive p-adic Groups I , 2021 .

[23]  Gordan Savin,et al.  Raising nilpotent orbits in wave-front sets , 2014, 1412.8742.

[24]  Dihua Jiang,et al.  Arthur Parameters and Fourier coefficients for Automorphic Forms on Symplectic Groups , 2013, 1309.6239.

[25]  Dihua Jiang,et al.  On fourier coefficients of automorphic forms of GL(n) , 2013 .

[26]  Bin Xu,et al.  On top Fourier coefficients of certain automorphic representations of GLn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document , 2018, manuscripta mathematica.

[27]  D. Ginzburg,et al.  The descent map from automorphic representations of GL(n) to classical groups , 2011 .

[28]  Dihua Jiang Automorphic Integral Transforms for Classical Groups I: Endoscopy Correspondences , 2012, 1212.6525.

[29]  Avraham Aizenbud,et al.  Multiplicity one Theorems , 2007, 0709.4215.

[30]  G. Muić On Certain Classes of Unitary Representations for Split Classical Groups , 2007, Canadian Journal of Mathematics.

[31]  Emile Takahiro Okada,et al.  The wavefront set of spherical Arthur representations , 2021 .

[32]  Lei Zhang,et al.  Arthur parameters and cuspidal automorphic modules of classical groups , 2015, Annals of Mathematics.

[33]  Dan Barbasch The unitary spherical spectrum for split classical groups , 2010, Journal of the Institute of Mathematics of Jussieu.

[34]  F. Shahidi Eisenstein Series and Automorphic $l$-functions , 2010 .