The game chromatic number of random graphs

Given a graph G and an integer k, two players take turns coloring the vertices of G one by one using k colors so that neighboring vertices get different colors. The first player wins iff at the end of the game all the vertices of G are colored. The game chromatic number χg(G) is the minimum k for which the first player has a winning strategy. In this study, we analyze the asymptotic behavior of this parameter for a random graph Gn,p. We show that with high probability, the game chromatic number of Gn,p is at least twice its chromatic number but, up to a multiplicative constant, has the same order of magnitude. We also study the game chromatic number of random bipartite graphs. © 2007 Wiley Periodicals, Inc. Random Struct. Alg., 2008

[1]  Béla Bollobás,et al.  The chromatic number of random graphs , 1988, Comb..

[2]  U. Faigle,et al.  On the game chromatic number of some classes of graphs , 1991 .

[3]  Hans L. Bodlaender On the Complexity of Some Coloring Games , 1991, Int. J. Found. Comput. Sci..

[4]  Hal A. Kierstead,et al.  Planar Graph Coloring with an Uncooperative Partner , 1994, Planar Graphs.

[5]  Tomasz Luczak The chromatic number of random graphs , 1991, Comb..

[6]  Dieter Kratsch,et al.  The Complexity of Coloring Games on Perfect Graphs , 1992, Theor. Comput. Sci..

[7]  Noga Alon,et al.  The Probabilistic Method , 2015, Fundamentals of Ramsey Theory.

[8]  Hal A. Kierstead,et al.  Radius two trees specify χ-bounded classes , 1994, J. Graph Theory.

[9]  Xuding Zhu The Game Coloring Number of Planar Graphs , 1999, J. Comb. Theory, Ser. B.

[10]  Xuding Zhu,et al.  A bound for the game chromatic number of graphs , 1999, Discret. Math..

[11]  Xuding Zhu,et al.  Game chromatic number of outerplanar graphs , 1999 .

[12]  Svante Janson,et al.  Random graphs , 2000, Wiley-Interscience series in discrete mathematics and optimization.

[13]  Jaroslav Nesetril,et al.  On the Oriented Game Chromatic Number , 2001, Electron. J. Comb..

[14]  Xuding Zhu,et al.  Game chromatic index of k-degenerate graphs , 2001 .

[15]  Zsolt Tuza,et al.  Marking Games and the Oriented Game Chromatic Number of Partial k-Trees , 2003, Graphs Comb..

[16]  Hal A. Kierstead,et al.  A simple competitive graph coloring algorithm III , 2004, J. Comb. Theory B.

[17]  Noga Alon,et al.  The Probabilistic Method, Second Edition , 2004 .

[18]  Alan M. Frieze,et al.  Random graphs , 2006, SODA '06.

[19]  Xuding Zhu,et al.  The Map-Coloring Game , 2007, Am. Math. Mon..