Bayesian Feature Learning for Seismic Compressive Sensing and Denoising

ABSTRACTExtracting the maximum possible information from the available measurements is a challenging task but is required when sensing seismic signals in inaccessible locations. Compressive sensing (CS) is a framework that allows reconstruction of sparse signals from fewer measurements than conventional sampling rates. In seismic CS, the use of sparse transforms has some success; however, defining fixed basis functions is not trivial given the plethora of possibilities. Furthermore, the assumption that every instance of a seismic signal is sparse in any acquisition domain under the same transformation is limiting. We use beta process factor analysis (BPFA) to learn sparse transforms for seismic signals in the time slice and shot record domains from available data, and we use them as dictionaries for CS and denoising. Algorithms that use predefined basis functions are compared against BPFA, with BPFA obtaining state-of-the-art reconstructions, illustrating the importance of decomposing seismic signals into...

[1]  D. J. Verschuur,et al.  The utilization of the double focal transformation for sparse data representation and data reconstruction , 2016 .

[2]  Balas K. Natarajan,et al.  Sparse Approximate Solutions to Linear Systems , 1995, SIAM J. Comput..

[3]  Lawrence Carin,et al.  Nonparametric factor analysis with beta process priors , 2009, ICML '09.

[4]  Thomas L. Griffiths,et al.  The Indian Buffet Process: An Introduction and Review , 2011, J. Mach. Learn. Res..

[5]  Mauricio D. Sacchi,et al.  High-resolution prestack seismic inversion using a hybrid FISTA least-squares strategy , 2013 .

[6]  Michael P. Friedlander,et al.  Probing the Pareto Frontier for Basis Pursuit Solutions , 2008, SIAM J. Sci. Comput..

[7]  Nadia Kreimer,et al.  A Comparison of 5D Reconstruction Methods , 2012 .

[8]  王彦飞,et al.  Accelerating seismic interpolation with a gradient projection method based on tight frame property of curvelet , 2015 .

[9]  A. C. Faul,et al.  Relevance Vector Machines with Uncertainty Measure for Seismic Bayesian Compressive Sensing and Survey Design , 2016, 2016 15th IEEE International Conference on Machine Learning and Applications (ICMLA).

[10]  M. Oristaglio SEAM Phase II—Land Seismic Challenges , 2012 .

[11]  David L Donoho,et al.  Compressed sensing , 2006, IEEE Transactions on Information Theory.

[12]  Emmanuel J. Candès,et al.  Near-Optimal Signal Recovery From Random Projections: Universal Encoding Strategies? , 2004, IEEE Transactions on Information Theory.

[13]  A. Stanton,et al.  Mitigating Artifacts in Projection Onto Convex Sets Interpolation , 2015 .

[14]  Felix J. Herrmann,et al.  Non-parametric seismic data recovery with curvelet frames , 2008 .

[15]  Nadia Kreimer,et al.  A Tensor Higher-order Singular Value Decomposition (HOSVD) For Pre-stack Simultaneous Noise-reduction And Interpolation , 2011 .

[16]  Gang Yang,et al.  Missing Information Reconstruction of Remote Sensing Data: A Technical Review , 2015, IEEE Geoscience and Remote Sensing Magazine.

[17]  James H. McClellan,et al.  Seismic data denoising through multiscale and sparsity-promoting dictionary learning , 2015 .

[18]  Mauricio D. Sacchi,et al.  Interpolation and extrapolation using a high-resolution discrete Fourier transform , 1998, IEEE Trans. Signal Process..

[19]  Pascal Vincent,et al.  Representation Learning: A Review and New Perspectives , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[20]  Mauricio D. Sacchi,et al.  Surface-Consistent Sparse Multichannel Blind Deconvolution of Seismic Signals , 2016, IEEE Transactions on Geoscience and Remote Sensing.

[21]  R. Abma,et al.  3D interpolation of irregular data with a POCS algorithm , 2006 .

[22]  David B. Dunson,et al.  Nonparametric Bayesian Dictionary Learning for Analysis of Noisy and Incomplete Images , 2012, IEEE Transactions on Image Processing.

[23]  Nitish Srivastava,et al.  Dropout: a simple way to prevent neural networks from overfitting , 2014, J. Mach. Learn. Res..

[24]  Guillermo Sapiro,et al.  Non-Parametric Bayesian Dictionary Learning for Sparse Image Representations , 2009, NIPS.

[25]  Michael Elad,et al.  Image Denoising Via Sparse and Redundant Representations Over Learned Dictionaries , 2006, IEEE Transactions on Image Processing.

[26]  Mauricio D. Sacchi,et al.  Accurate interpolation with high-resolution time-variant Radon transforms , 2002 .

[27]  A. Bruckstein,et al.  K-SVD : An Algorithm for Designing of Overcomplete Dictionaries for Sparse Representation , 2005 .

[28]  George Eastman House,et al.  Sparse Bayesian Learning and the Relevance Vector Machine , 2001 .

[29]  Walter Söllner,et al.  Dictionary learning for signal-to-noise ratio enhancement , 2015 .

[30]  H. Nyquist,et al.  Certain Topics in Telegraph Transmission Theory , 1928, Transactions of the American Institute of Electrical Engineers.

[31]  Pascal Vincent,et al.  Contractive Auto-Encoders: Explicit Invariance During Feature Extraction , 2011, ICML.

[32]  John W. Paisley,et al.  Scalable Bayesian nonparametric dictionary learning , 2015, 2015 23rd European Signal Processing Conference (EUSIPCO).

[33]  Marc Teboulle,et al.  A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems , 2009, SIAM J. Imaging Sci..

[34]  M. Elad,et al.  $rm K$-SVD: An Algorithm for Designing Overcomplete Dictionaries for Sparse Representation , 2006, IEEE Transactions on Signal Processing.

[35]  Jianwei Ma,et al.  Simultaneous dictionary learning and denoising for seismic data , 2014 .

[36]  David Zhang,et al.  FSIM: A Feature Similarity Index for Image Quality Assessment , 2011, IEEE Transactions on Image Processing.

[37]  Yoshua Bengio,et al.  Extracting and composing robust features with denoising autoencoders , 2008, ICML '08.

[38]  Mauricio D. Sacchi,et al.  Fourier Reconstruction of Nonuniformly Sampled, Aliased Seismic Data , 2022 .

[39]  E.J. Candes,et al.  An Introduction To Compressive Sampling , 2008, IEEE Signal Processing Magazine.

[40]  Geoffrey E. Hinton Training Products of Experts by Minimizing Contrastive Divergence , 2002, Neural Computation.

[41]  Michael E. Tipping,et al.  Fast Marginal Likelihood Maximisation for Sparse Bayesian Models , 2003 .