Analysis and Design of the 0.13- $\mu\hbox{m}$ CMOS Shunt–Series Series–Shunt Dual-Feedback Amplifier

This paper demonstrates the design methodology of the shunt-series series-shunt dual-feedback Meyer wideband amplifier. The small-signal S-parameters are obtained for the first time using the pole-and-zero analysis, thus giving the RF designers a detailed insight into the Meyer amplifier. A 10-GHz wideband amplifier is demonstrated in this paper, using 0.13-mum CMOS technology to verify our design theory. The experimental results of the S-parameters highly agree with our theory.

[1]  Jongsoo Lee,et al.  Analysis and design of an ultra-wideband low-noise amplifier using resistive feedback in SiGe HBT technology , 2006, IEEE Transactions on Microwave Theory and Techniques.

[2]  Y.-J. E. Chen,et al.  Development of Integrated Broad-Band CMOS Low-Noise Amplifiers , 2007, IEEE Transactions on Circuits and Systems I: Regular Papers.

[3]  B. Razavi,et al.  A 60-GHz CMOS receiver front-end , 2006, IEEE Journal of Solid-State Circuits.

[4]  Robert G. Meyer,et al.  A wide-band ultralinear amplifier from 3 to 300 MHz , 1974 .

[5]  D.J. Allstot,et al.  Bandwidth Extension Techniques for CMOS Amplifiers , 2006, IEEE Journal of Solid-State Circuits.

[6]  Charles K. Alexander,et al.  Fundamentals of Electric Circuits , 1999 .

[7]  B. Nauta,et al.  Wide-band CMOS low-noise amplifier exploiting thermal noise canceling , 2004, IEEE Journal of Solid-State Circuits.

[8]  Yo-Sheng Lin,et al.  The determination of S-parameters from the poles of voltage-gain transfer function for RF IC design , 2005, IEEE Transactions on Circuits and Systems I: Regular Papers.

[9]  Sang-Gug Lee,et al.  An ultra-wideband CMOS low noise amplifier for 3-5-GHz UWB system , 2005 .

[10]  Ali M. Niknejad,et al.  A Highly Integrated 60GHz CMOS Front-End Receiver , 2007, 2007 IEEE International Solid-State Circuits Conference. Digest of Technical Papers.

[11]  R. G. Meyer,et al.  Wide-band, low-noise, matched-impedance amplifiers in submicrometer MOS technology , 1987 .

[12]  A. A. Abidi,et al.  General relations between IP2, IP3, and offsets in differential circuits and the effects of feedback , 2003 .

[13]  Shey-Shi Lu,et al.  The origin of the kink phenomenon of transistor scattering parameter S/sub 22/ , 2001 .

[14]  Tao Wang,et al.  3–10-GHz Ultra-Wideband Low-Noise Amplifier Utilizing Miller Effect and Inductive Shunt–Shunt Feedback Technique , 2007, IEEE Transactions on Microwave Theory and Techniques.

[15]  Kevin W. Kobayashi,et al.  GaAs HBT wideband matrix distributed and Darlington feedback amplifiers to 24 GHz , 1991 .

[16]  A. Bevilacqua,et al.  An ultrawideband CMOS low-noise amplifier for 3.1-10.6-GHz wireless receivers , 2004, IEEE Journal of Solid-State Circuits.

[17]  R.A. Blauschild,et al.  A 4-terminal wide-band monolithic amplifier , 1981, IEEE Journal of Solid-State Circuits.

[18]  E. M. Cherry,et al.  The Design of Wide-Band Transistor Feedback Amplifiers , 1963 .

[19]  Shen-Iuan Liu,et al.  An Ultra-Wide-Band 0.4–10-GHz LNA in 0.18-$\mu$m CMOS , 2007, IEEE Transactions on Circuits and Systems II: Express Briefs.

[20]  Mohamed I. Elmasry,et al.  A Low-Noise CMOS Distributed Amplifier for Ultra-Wide-Band Applications , 2008, IEEE Transactions on Circuits and Systems II: Express Briefs.

[21]  R.G. Meyer,et al.  A low-distortion monolithic wide-band amplifier , 1977, IEEE Journal of Solid-State Circuits.

[22]  Robert G. Meyer,et al.  PRINCIPLES OF MONOLITHIC WIDEBAND FEEDBACK AMPLIFIER DESIGN , 1992 .

[23]  Giuseppe Palmisano,et al.  A Ku-band monolithic tuner-LNB for satellite applications [low noise block down-converter] , 2004, Proceedings of the IEEE 2004 Custom Integrated Circuits Conference (IEEE Cat. No.04CH37571).

[24]  F. Zhang,et al.  Low-power programmable gain CMOS distributed LNA , 2006, IEEE Journal of Solid-State Circuits.

[25]  F. Svelto,et al.  A variable gain RF front-end, based on a Voltage-Voltage feedback LNA, for multistandard applications , 2005, IEEE Journal of Solid-State Circuits.

[26]  A.A. Abidi,et al.  High-frequency noise measurements on FET's with small dimensions , 1986, IEEE Transactions on Electron Devices.

[27]  S.S. Taylor,et al.  A 5GHz resistive-feedback CMOS LNA for low-cost multi-standard applications , 2006, 2006 IEEE International Solid State Circuits Conference - Digest of Technical Papers.

[28]  Robert G. Meyer,et al.  Analysis and Design of Analog Integrated Circuits , 1993 .

[29]  William Liu,et al.  MOSFET Models for SPICE Simulation: Including BSIM3v3 and BSIM4 , 2001 .

[30]  E. Klumperink,et al.  Noise cancelling in wideband CMOS LNAs , 2002, 2002 IEEE International Solid-State Circuits Conference. Digest of Technical Papers (Cat. No.02CH37315).

[31]  Antonio Liscidini,et al.  A 0.13 /spl mu/m CMOS front-end, for DCS1800/UMTS/802.11b-g with multiband positive feedback low-noise amplifier , 2006, IEEE Journal of Solid-State Circuits.

[32]  Chinchun Meng,et al.  A novel interpretation of transistor S-parameters by poles and zeros for RF IC circuit design , 2001 .

[33]  Mourad N. El-Gamal,et al.  Design Techniques of CMOS Ultra-Wide-Band Amplifiers for Multistandard Communications , 2008, IEEE Transactions on Circuits and Systems II: Express Briefs.

[34]  Da-Chiang Chang,et al.  A Compact Wideband CMOS Low-Noise Amplifier Using Shunt Resistive-Feedback and Series Inductive-Peaking Techniques , 2007, IEEE Microwave and Wireless Components Letters.

[35]  Chinchun Meng,et al.  Analysis, design, and optimization of InGaP-GaAs HBT matched-impedance wide-band amplifiers with multiple feedback loops , 2002 .

[36]  I. Kipnis,et al.  Silicon bipolar fixed and variable gain amplifier MMICs for microwave and lightwave applications up to 6 GHz , 1989, Digest of Papers.,Microwave and Millimeter-Wave Monolithic Circuits Symposium.