Illuminance flow over anisotropic surfaces.

A theory is presented to analyze images of anisotropic fine-scale surfaces. We investigate the estimates of illuminance flow by using structure tensors. For anisotropic surfaces, both the gradient-based and the Hessian-based tensors will yield deviations from the true illumination orientation. Our theory predicts this deviation. To show the use of this theory, an algorithm is derived that uses both tensors simultaneously to compensate for small amounts of anisotropy. Experimental results with rendered surfaces are shown to conform well to our theory.

[1]  A. M. Walker Statistical Analysis of a Random, Moving Surface , 1957, Nature.

[2]  F. E. Nicodemus,et al.  Geometrical considerations and nomenclature for reflectance , 1977 .

[3]  M. Berry,et al.  Umbilic points on Gaussian random surfaces , 1977 .

[4]  A. Pentland Finding the illuminant direction , 1982 .

[5]  A. Pentland The visual inference of shape : computation from local features , 1982 .

[6]  J. Koenderink,et al.  Geometrical modes as a general method to treat diffuse interreflections in radiometry , 1983 .

[7]  Michael J. Brooks,et al.  Shape and Source from Shading , 1985, IJCAI.

[8]  J. Bigun,et al.  Optimal Orientation Detection of Linear Symmetry , 1987, ICCV 1987.

[9]  Alex Pentland,et al.  On the Imaging of Fractal Surfaces , 1988, IEEE Trans. Pattern Anal. Mach. Intell..

[10]  D C Knill,et al.  Estimating illuminant direction and degree of surface relief. , 1990, Journal of the Optical Society of America. A, Optics and image science.

[11]  Rama Chellappa,et al.  Estimation of illuminant direction, albedo, and shape from shading , 1991, Proceedings. 1991 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[12]  Max A. Viergever,et al.  Scale-Space: Its Natural Operators and Differential Invariants , 1991, IPMI.

[13]  M. Chantler Why illuminant direction is fundamental to texture analysis , 2022 .

[14]  Mike J. Chantler,et al.  Illuminant-tilt estimation from images of isotropic texture , 1997 .

[15]  David G. Lowe,et al.  Object recognition from local scale-invariant features , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[16]  Yee-Hong Yang,et al.  Illuminant direction determination for multiple light sources , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[17]  J. Koenderink,et al.  Irradiation direction from texture. , 2003, Journal of the Optical Society of America. A, Optics, image science, and vision.

[18]  David J. Kriegman,et al.  The Bas-Relief Ambiguity , 2004, International Journal of Computer Vision.

[19]  Josef Bigün,et al.  Recognition by symmetry derivatives and the generalized structure tensor , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[20]  Andrew Zisserman,et al.  Estimating illumination direction from textured images , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..

[21]  David J. Kriegman,et al.  What Is the Set of Images of an Object Under All Possible Illumination Conditions? , 1998, International Journal of Computer Vision.

[22]  M. Chantler,et al.  Illumination-invariant texture classification using simple training images , 2005 .

[23]  Dianxiang Xu,et al.  A Study on Illumination Invariant Face Recognition Methods Based on Multiple Eigenspaces , 2005, ISNN.

[24]  Jan J. Koenderink,et al.  Irradiation Orientation from Obliquely Viewed Texture , 2005, DSSCV.

[25]  Maria Petrou,et al.  Classifying Surface Texture while Simultaneously Estimating Illumination Direction , 2005, International Journal of Computer Vision.

[26]  Josef Bigun,et al.  Multiscale complex moments of the local power spectrum. , 2007, Journal of the Optical Society of America. A, Optics, image science, and vision.