Simple Local Computation Algorithms for the General Lovász Local Lemma

We consider the task of designing Local Computation Algorithms (LCA) for applications of the Lovasz Local Lemma (LLL). LCA is a class of sublinear algorithms proposed by Rubinfeld et al. that have received a lot of attention in recent years. The LLL is an existential, sufficient condition for a collection of sets to have non-empty intersection (in applications, often, each set comprises all objects having a certain property). The ground-breaking algorithm of Moser and Tardos made the LLL fully constructive, following earlier results by Beck and Alon giving algorithms under significantly stronger LLL-like conditions. LCAs under those stronger conditions were given in Rubinfeld et al., where it was asked if the Moser-Tardos algorithm can be used to design LCAs under the standard LLL condition. The main contribution of this paper is to answer this question affirmatively. In fact, our techniques yield LCAs for settings beyond the standard LLL condition.

[1]  Robin A. Moser A constructive proof of the Lovász local lemma , 2008, STOC '09.

[2]  An Algorithmic Proof of the Lovasz Local Lemma via Resampling Oracles , 2015, 2015 IEEE 56th Annual Symposium on Foundations of Computer Science.

[3]  Aldo Procacci,et al.  An Improvement of the Lovász Local Lemma via Cluster Expansion , 2009, Combinatorics, Probability and Computing.

[4]  Klaus Jansen,et al.  Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques , 2012, Lecture Notes in Computer Science.

[5]  Fabian Kuhn,et al.  On the complexity of local distributed graph problems , 2016, STOC.

[6]  Omer Reingold,et al.  New techniques and tighter bounds for local computation algorithms , 2014, J. Comput. Syst. Sci..

[7]  Noga Alon,et al.  A parallel algorithmic version of the local lemma , 1991, [1991] Proceedings 32nd Annual Symposium of Foundations of Computer Science.

[8]  József Beck,et al.  An Algorithmic Approach to the Lovász Local Lemma. I , 1991, Random Struct. Algorithms.

[9]  Alistair Sinclair,et al.  Beyond the Lovász Local Lemma: Point to Set Correlations and Their Algorithmic Applications , 2018, 2019 IEEE 60th Annual Symposium on Foundations of Computer Science (FOCS).

[10]  Vladimir Kolmogorov,et al.  Commutativity in the Algorithmic Lovász Local Lemma , 2015, 2016 IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS).

[11]  Fotis Iliopoulos,et al.  Commutative Algorithms Approximate the LLL-distribution , 2017, APPROX-RANDOM.

[12]  Gábor Tardos,et al.  A constructive proof of the general lovász local lemma , 2009, JACM.

[13]  Sofya Raskhodnikova,et al.  Testing and Reconstruction of Lipschitz Functions with Applications to Data Privacy , 2011, 2011 IEEE 52nd Annual Symposium on Foundations of Computer Science.

[14]  Ronitt Rubinfeld,et al.  Local Algorithms for Sparse Spanning Graphs , 2014, Algorithmica.

[15]  P. Erdos-L Lovász Problems and Results on 3-chromatic Hypergraphs and Some Related Questions , 2022 .

[16]  Aravind Srinivasan Improved algorithmic versions of the Lovász Local Lemma , 2008, SODA '08.

[17]  Aravind Srinivasan,et al.  A constructive algorithm for the Lovász Local Lemma on permutations , 2014, SODA.

[18]  James B. Shearer,et al.  On a problem of spencer , 1985, Comb..

[19]  Manuel Blum,et al.  Self-testing/correcting with applications to numerical problems , 1990, STOC '90.

[20]  Dimitris Achlioptas,et al.  Random Walks That Find Perfect Objects and the Lovasz Local Lemma , 2014, 2014 IEEE 55th Annual Symposium on Foundations of Computer Science.

[21]  Noga Alon,et al.  Space-efficient local computation algorithms , 2011, SODA.

[22]  Paul Erdös,et al.  Lopsided Lovász Local Lemma and Latin transversals , 1991, Discret. Appl. Math..

[23]  Bruce A. Reed,et al.  A Bound on the Strong Chromatic Index of a Graph, , 1997, J. Comb. Theory B.

[24]  Yishay Mansour,et al.  A Local Computation Approximation Scheme to Maximum Matching , 2013, APPROX-RANDOM.

[25]  B. Reed Graph Colouring and the Probabilistic Method , 2001 .

[26]  Ronitt Rubinfeld,et al.  Fast Local Computation Algorithms , 2011, ICS.

[27]  Michael E. Saks,et al.  Local Monotonicity Reconstruction , 2010, SIAM J. Comput..

[28]  Ronitt Rubinfeld,et al.  A Local Algorithm for Constructing Spanners in Minor-Free Graphs , 2016, APPROX-RANDOM.

[29]  Jukka Suomela,et al.  Survey of local algorithms , 2013, CSUR.

[30]  Bruce A. Reed,et al.  Further algorithmic aspects of the local lemma , 1998, STOC '98.

[31]  Gábor Tardos,et al.  The local lemma is tight for SAT , 2010, SODA '11.

[32]  Yishay Mansour,et al.  Converting Online Algorithms to Local Computation Algorithms , 2012, ICALP.

[33]  Bernard Chazelle,et al.  Property-Preserving Data Reconstruction , 2004, Algorithmica.

[34]  Krzysztof Onak,et al.  Constant-Time Approximation Algorithms via Local Improvements , 2008, 2008 49th Annual IEEE Symposium on Foundations of Computer Science.

[35]  C.H. Papadimitriou,et al.  On selecting a satisfying truth assignment , 1991, [1991] Proceedings 32nd Annual Symposium of Foundations of Computer Science.

[36]  Avinatan Hassidim,et al.  Local Computation Mechanism Design , 2013, ACM Trans. Economics and Comput..

[37]  Mohsen Ghaffari,et al.  Sublogarithmic Distributed Algorithms for Lovász Local lemma, and the Complexity Hierarchy , 2017, DISC.

[38]  Vladimir Kolmogorov,et al.  A Local Lemma for Focused Stochastic Algorithms , 2019, SIAM J. Comput..

[39]  Fabian Kuhn,et al.  On Derandomizing Local Distributed Algorithms , 2017, 2018 IEEE 59th Annual Symposium on Foundations of Computer Science (FOCS).

[40]  Seth Pettie,et al.  The Complexity of Distributed Edge Coloring with Small Palettes , 2017, SODA.

[41]  Christian Scheideler,et al.  Coloring non-uniform hypergraphs: a new algorithmic approach to the general Lovász local lemma , 2000, SODA '00.

[42]  MansourYishay,et al.  Local Computation Mechanism Design , 2016 .