Simple Local Computation Algorithms for the General Lovász Local Lemma
暂无分享,去创建一个
Themis Gouleakis | Dimitris Achlioptas | Fotis Iliopoulos | D. Achlioptas | F. Iliopoulos | Themis Gouleakis
[1] Robin A. Moser. A constructive proof of the Lovász local lemma , 2008, STOC '09.
[2] An Algorithmic Proof of the Lovasz Local Lemma via Resampling Oracles , 2015, 2015 IEEE 56th Annual Symposium on Foundations of Computer Science.
[3] Aldo Procacci,et al. An Improvement of the Lovász Local Lemma via Cluster Expansion , 2009, Combinatorics, Probability and Computing.
[4] Klaus Jansen,et al. Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques , 2012, Lecture Notes in Computer Science.
[5] Fabian Kuhn,et al. On the complexity of local distributed graph problems , 2016, STOC.
[6] Omer Reingold,et al. New techniques and tighter bounds for local computation algorithms , 2014, J. Comput. Syst. Sci..
[7] Noga Alon,et al. A parallel algorithmic version of the local lemma , 1991, [1991] Proceedings 32nd Annual Symposium of Foundations of Computer Science.
[8] József Beck,et al. An Algorithmic Approach to the Lovász Local Lemma. I , 1991, Random Struct. Algorithms.
[9] Alistair Sinclair,et al. Beyond the Lovász Local Lemma: Point to Set Correlations and Their Algorithmic Applications , 2018, 2019 IEEE 60th Annual Symposium on Foundations of Computer Science (FOCS).
[10] Vladimir Kolmogorov,et al. Commutativity in the Algorithmic Lovász Local Lemma , 2015, 2016 IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS).
[11] Fotis Iliopoulos,et al. Commutative Algorithms Approximate the LLL-distribution , 2017, APPROX-RANDOM.
[12] Gábor Tardos,et al. A constructive proof of the general lovász local lemma , 2009, JACM.
[13] Sofya Raskhodnikova,et al. Testing and Reconstruction of Lipschitz Functions with Applications to Data Privacy , 2011, 2011 IEEE 52nd Annual Symposium on Foundations of Computer Science.
[14] Ronitt Rubinfeld,et al. Local Algorithms for Sparse Spanning Graphs , 2014, Algorithmica.
[15] P. Erdos-L Lovász. Problems and Results on 3-chromatic Hypergraphs and Some Related Questions , 2022 .
[16] Aravind Srinivasan. Improved algorithmic versions of the Lovász Local Lemma , 2008, SODA '08.
[17] Aravind Srinivasan,et al. A constructive algorithm for the Lovász Local Lemma on permutations , 2014, SODA.
[18] James B. Shearer,et al. On a problem of spencer , 1985, Comb..
[19] Manuel Blum,et al. Self-testing/correcting with applications to numerical problems , 1990, STOC '90.
[20] Dimitris Achlioptas,et al. Random Walks That Find Perfect Objects and the Lovasz Local Lemma , 2014, 2014 IEEE 55th Annual Symposium on Foundations of Computer Science.
[21] Noga Alon,et al. Space-efficient local computation algorithms , 2011, SODA.
[22] Paul Erdös,et al. Lopsided Lovász Local Lemma and Latin transversals , 1991, Discret. Appl. Math..
[23] Bruce A. Reed,et al. A Bound on the Strong Chromatic Index of a Graph, , 1997, J. Comb. Theory B.
[24] Yishay Mansour,et al. A Local Computation Approximation Scheme to Maximum Matching , 2013, APPROX-RANDOM.
[25] B. Reed. Graph Colouring and the Probabilistic Method , 2001 .
[26] Ronitt Rubinfeld,et al. Fast Local Computation Algorithms , 2011, ICS.
[27] Michael E. Saks,et al. Local Monotonicity Reconstruction , 2010, SIAM J. Comput..
[28] Ronitt Rubinfeld,et al. A Local Algorithm for Constructing Spanners in Minor-Free Graphs , 2016, APPROX-RANDOM.
[29] Jukka Suomela,et al. Survey of local algorithms , 2013, CSUR.
[30] Bruce A. Reed,et al. Further algorithmic aspects of the local lemma , 1998, STOC '98.
[31] Gábor Tardos,et al. The local lemma is tight for SAT , 2010, SODA '11.
[32] Yishay Mansour,et al. Converting Online Algorithms to Local Computation Algorithms , 2012, ICALP.
[33] Bernard Chazelle,et al. Property-Preserving Data Reconstruction , 2004, Algorithmica.
[34] Krzysztof Onak,et al. Constant-Time Approximation Algorithms via Local Improvements , 2008, 2008 49th Annual IEEE Symposium on Foundations of Computer Science.
[35] C.H. Papadimitriou,et al. On selecting a satisfying truth assignment , 1991, [1991] Proceedings 32nd Annual Symposium of Foundations of Computer Science.
[36] Avinatan Hassidim,et al. Local Computation Mechanism Design , 2013, ACM Trans. Economics and Comput..
[37] Mohsen Ghaffari,et al. Sublogarithmic Distributed Algorithms for Lovász Local lemma, and the Complexity Hierarchy , 2017, DISC.
[38] Vladimir Kolmogorov,et al. A Local Lemma for Focused Stochastic Algorithms , 2019, SIAM J. Comput..
[39] Fabian Kuhn,et al. On Derandomizing Local Distributed Algorithms , 2017, 2018 IEEE 59th Annual Symposium on Foundations of Computer Science (FOCS).
[40] Seth Pettie,et al. The Complexity of Distributed Edge Coloring with Small Palettes , 2017, SODA.
[41] Christian Scheideler,et al. Coloring non-uniform hypergraphs: a new algorithmic approach to the general Lovász local lemma , 2000, SODA '00.
[42] MansourYishay,et al. Local Computation Mechanism Design , 2016 .