An efficient high dimensional quantum Schur transform

The Schur transform is a unitary operator that block diagonalizes the action of the symmetric and unitary groups on an $n$ fold tensor product $V^{\otimes n}$ of a vector space $V$ of dimension $d$. Bacon, Chuang and Harrow \cite{BCH07} gave a quantum algorithm for this transform that is polynomial in $n$, $d$ and $\log\epsilon^{-1}$, where $\epsilon$ is the precision. In a footnote in Harrow's thesis \cite{H05}, a brief description of how to make the algorithm of \cite{BCH07} polynomial in $\log d$ is given using the unitary group representation theory (however, this has not been explained in detail anywhere. In this article, we present a quantum algorithm for the Schur transform that is polynomial in $n$, $\log d$ and $\log\epsilon^{-1}$ using a different approach. Specifically, we build this transform using the representation theory of the symmetric group and in this sense our technique can be considered a "dual" algorithm to \cite{BCH07}. A novel feature of our algorithm is that we construct the quantum Fourier transform over the so called \emph{permutation modules}, which could have other applications.

[1]  J. Delft,et al.  A numerical algorithm for the explicit calculation of SU(N) and SL(N,C) Clebsch-Gordan coefficients , 2010, 1009.0437.

[2]  Ryan O'Donnell,et al.  Efficient quantum tomography , 2015, STOC.

[3]  R. Stanley Enumerative Combinatorics by Richard P. Stanley , 2011 .

[4]  Alexander Russell,et al.  Generic quantum Fourier transforms , 2004, SODA '04.

[5]  R. Werner,et al.  Estimating the spectrum of a density operator , 2001, quant-ph/0102027.

[6]  P. Pascual,et al.  OPTIMAL MINIMAL MEASUREMENTS OF MIXED STATES , 1999 .

[7]  M. Hayashi Optimal sequence of quantum measurements in the sense of Stein's lemma in quantum hypothesis testing , 2002, quant-ph/0208020.

[8]  A. Harrow Applications of coherent classical communication and the schur transform to quantum information theory , 2005, quant-ph/0512255.

[9]  D. Bacon Decoherence, Control, and Symmetry in Quantum Computers , 2001 .

[10]  Viola,et al.  Theory of quantum error correction for general noise , 2000, Physical review letters.

[11]  Ryan O'Donnell,et al.  Quantum Spectrum Testing , 2015, Communications in Mathematical Physics.

[12]  Giulio Chiribella,et al.  Quantum superreplication of states and gates , 2015, ArXiv.

[13]  A. Botero,et al.  Universal and distortion-free entanglement concentration of multiqubit quantum states in the W class , 2017, Physical Review A.

[14]  G. James,et al.  The Representation Theory of the Symmetric Group , 2009 .

[15]  Alexander Russell,et al.  Quantum Fourier Transforms and the Complexity of Link Invariants for Quantum Doubles of Finite Groups , 2012, ArXiv.

[16]  R. Gill,et al.  State estimation for large ensembles , 1999, quant-ph/9902063.

[17]  Robert Beals,et al.  Quantum computation of Fourier transforms over symmetric groups , 1997, STOC '97.

[18]  K. B. Whaley,et al.  Theory of decoherence-free fault-tolerant universal quantum computation , 2000, quant-ph/0004064.

[19]  G. Chiribella,et al.  Universal superreplication of unitary gates. , 2014, Physical review letters.

[20]  R. Stanley Enumerative Combinatorics: Volume 1 , 2011 .

[21]  W. Fulton Young Tableaux: With Applications to Representation Theory and Geometry , 1996 .

[22]  Robert Alicki,et al.  Symmetry properties of product states for the system of N n‐level atoms , 1988 .

[23]  Vojtěch Havlíček,et al.  Quantum Schur Sampling Circuits can be Strongly Simulated. , 2018, Physical review letters.

[24]  P. Zanardi,et al.  Error avoiding quantum codes , 1997, quant-ph/9710041.

[25]  Israel M. Gelfand,et al.  Finite-dimensional representations of the group of unimodular matrices , 1950 .

[26]  Dave Bacon,et al.  The quantum Schur and Clebsch-Gordan transforms: I. efficient qudit circuits , 2007, SODA '07.

[27]  Masahito Hayashi,et al.  Optimal compression for identically prepared qubit states , 2016, Physical review letters.

[28]  Bruce E. Sagan,et al.  The symmetric group - representations, combinatorial algorithms, and symmetric functions , 2001, Wadsworth & Brooks / Cole mathematics series.

[29]  D. Bacon,et al.  Efficient quantum circuits for Schur and Clebsch-Gordan transforms. , 2004, Physical review letters.

[30]  S. Doty,et al.  Brauer algebras, symplectic Schur algebras and Schur-Weyl duality , 2005, math/0503545.

[31]  Masahito Hayashi,et al.  Quantum universal variable-length source coding , 2002, quant-ph/0202001.

[32]  Masahito Hayashi,et al.  Universal distortion-free entanglement concentration , 2004, International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings..

[33]  q-Rook Monoid Algebras, Hecke Algebras, and Schur–Weyl Duality , 2004, math/0401330.

[34]  Graeme Mitchison,et al.  A most compendious and facile quantum de Finetti theorem , 2007 .

[35]  M. Keyl QUANTUM STATE ESTIMATION AND LARGE DEVIATIONS , 2004 .

[36]  Xiaodi Wu,et al.  Sample-Optimal Tomography of Quantum States , 2015, IEEE Transactions on Information Theory.

[37]  B. Sagan The Symmetric Group , 2001 .

[38]  Masahito Hayashi,et al.  Simple construction of quantum universal variable-length source coding , 2002, IEEE International Symposium on Information Theory, 2003. Proceedings..

[39]  Matthias Christandl,et al.  The Spectra of Quantum States and the Kronecker Coefficients of the Symmetric Group , 2006 .

[40]  Alexei Y. Kitaev,et al.  Quantum measurements and the Abelian Stabilizer Problem , 1995, Electron. Colloquium Comput. Complex..

[41]  R. Goodman,et al.  Representations and Invariants of the Classical Groups , 1998 .