Random multiaxial fatigue: A comparative analysis among selected frequency and time domain fatigue evaluation methods

Abstract Fatigue analysis of mechanical components subjected to random loads has been recently upgraded through several developments of calculation procedures, with the scope to support the designer within the loading condition numerical simulation. Under such scenario, the frequency domain approach is characterized by interesting features, which support its adoption in alternative or in conjunction with the classic time-domain approach, especially when the frequency domain is applied for the individuation of the component critical locations. The major goal of this paper consists of an overview about the strength and weaknesses of frequency approach with respect to the time domain one by comparing the reference time domain methods with their frequency domain translation. A significant test case development will be shown, representing a classic automotive one (chassis validation). Promising results of the frequency method application will be presented, encouraging its adoption on large scale.

[1]  J. Bendat,et al.  Random Data: Analysis and Measurement Procedures , 1971 .

[2]  Soon-Bok Lee,et al.  A critical review on multiaxial fatigue assessments of metals , 1996 .

[3]  N. W. M. Bishop,et al.  A THEORETICAL SOLUTION FOR THE ESTIMATION OF “RAINFLOW” RANGES FROM POWER SPECTRAL DENSITY DATA , 1990 .

[4]  Mauro Filippini,et al.  A comparative study of multiaxial high-cycle fatigue criteria for metals , 1997 .

[5]  Claudio Braccesi,et al.  Evaluation of mechanical component fatigue behavior under random loads: Indirect frequency domain method , 2014 .

[6]  Claudio Braccesi,et al.  A procedure for the virtual evaluation of the stress state of mechanical systems and components for the automotive industry: Development and experimental validation , 2005 .

[7]  Franck Morel A critical plane fatigue model applied to out‐of‐phase bending and torsion load conditions , 2001 .

[8]  Luca Landi,et al.  Random Loads Fatigue: The Use of Spectral Methods Within Multibody Simulation , 2005 .

[9]  J. D. Robson ROAD SURFACE DESCRIPTION AND VEHICLE RESPONSE , 1979 .

[11]  Claudio Braccesi,et al.  Random fatigue. A new frequency domain criterion for the damage evaluation of mechanical components , 2015 .

[12]  Tomokazu Matake An Explanation on Fatigue Limit under Combined Stress , 1977 .

[13]  Claudio Braccesi,et al.  Fatigue behaviour analysis of mechanical components subject to random bimodal stress process: frequency domain approach , 2005 .

[14]  Franck Morel,et al.  A critical plane approach for life prediction of high cycle fatigue under multiaxial variable amplitude loading , 2000 .

[15]  Igor Rychlik,et al.  WAFO - A Matlab Toolbox For Analysis of Random Waves And Loads , 2000 .

[16]  Claudio Braccesi,et al.  The frequency domain approach in virtual fatigue estimation of non-linear systems: The problem of non-Gaussian states of stress , 2009 .

[17]  Claudio Braccesi,et al.  Random Loads Fatigue and Dynamic Simulation: a New Procedure to Evaluate the Behaviour of Non-Linear Systems , 2011 .

[18]  Thomas L. Paez,et al.  Random Vibrations: Theory and Practice , 1995 .

[19]  Curtis E. Larsen,et al.  Improved Spectral Method for Variable Amplitude Fatigue Prediction , 1990 .

[20]  Jack A. Collins,et al.  Failure of materials in mechanical design , 1981 .

[21]  André Preumont,et al.  Random Vibration and Spectral Analysis , 2010 .

[22]  M. Bampton,et al.  Coupling of substructures for dynamic analyses. , 1968 .

[23]  Luca Landi,et al.  A Methodology for Active Control of Multibody Test-Rig for Virtual Simulation of Vehicles Through Acceleration Inputs , 2005 .

[24]  A. Mikkola,et al.  Sub-modeling approach for obtaining structural stress histories during dynamic analysis , 2013 .

[25]  Shahram Sarkani,et al.  Stochastic fatigue damage accumulation under broadband loadings , 1995 .

[27]  André Preumont,et al.  Méthodes spectrales pour une analyse en fatigue des structures métalliques sous chargements aléatoires multiaxiaux , 2001 .

[28]  M. Matsuichi,et al.  Fatigue of metals subjected to varying stress , 1968 .

[29]  Shinsuke Sakai,et al.  On the Distribution of Rainflow Range for Gaussian Random Processes with Bimodal PSD , 1995 .

[30]  Ed Habtour,et al.  Review of Response and Damage of Linear and Nonlinear Systems under Multiaxial Vibration , 2014 .

[31]  Claudio Braccesi,et al.  An equivalent uniaxial stress process for fatigue life estimation of mechanical components under multiaxial stress conditions , 2008 .

[32]  K Dang-Van,et al.  Macro-Micro Approach in High-Cycle Multiaxial Fatigue , 1993 .

[33]  André Preumont,et al.  Spectral methods for multiaxial random fatigue analysis of metallic structures , 2000 .

[34]  Andrea Carpinteri,et al.  Multiaxial high-cycle fatigue criterion for hard metals , 2001 .

[35]  Adam Niesłony,et al.  Comparison of some selected multiaxial fatigue failure criteria dedicated for spectral method , 2010 .

[36]  Paul H. Wirsching,et al.  Fatigue under Wide Band Random Stresses , 1980 .

[37]  Claudio Braccesi,et al.  Development of selection methodologies and procedures of the modal set for the generation of flexible body models for multi-body simulation , 2004 .

[38]  I. Rychlik A new definition of the rainflow cycle counting method , 1987 .

[39]  Accurate Prediction of Fatigue Life under Random Loading , 2012 .

[40]  F. Cianetti Development of a Modal Approach for the Fatigue Damage Evaluation of Mechanical Components Subjected to Random Loads , 2012 .

[41]  André Preumont,et al.  TOOLS FOR A MULTIAXIAL FATIGUE ANALYSIS OF STRUCTURES SUBMITTED TO RANDOM VIBRATIONS , 1999 .

[42]  André Preumont,et al.  Predicting random high-cycle fatigue life with finite elements , 1994 .

[43]  André Preumont,et al.  Spectral methods to estimate local multiaxial fatigue failure for structures undergoing random vibrations , 2001 .

[44]  Janko Slavič,et al.  Frequency-domain methods for a vibration-fatigue-life estimation – Application to real data , 2013 .

[45]  Turan Dirlik,et al.  Application of computers in fatigue analysis , 1985 .

[46]  George Sines,et al.  Fatigue Criteria Under Combined Stresses or Strains , 1981 .

[47]  Roberto Tovo,et al.  A stress invariant based spectral method to estimate fatigue life under multiaxial random loading , 2011 .

[48]  Claudio Braccesi,et al.  A Frequency Method for Fatigue Life Estimation of Mechanical Components under Bimodal Random Stress Process , 2005 .

[49]  T Lagoda Influence of correlations between stresses on calculated fatigue life of machine elements , 1996 .