NAFlex: a web server for the study of nucleic acid flexibility

We present NAFlex, a new web tool to study the flexibility of nucleic acids, either isolated or bound to other molecules. The server allows the user to incorporate structures from protein data banks, completing gaps and removing structural inconsistencies. It is also possible to define canonical (average or sequence-adapted) nucleic acid structures using a variety of predefined internal libraries, as well to create specific nucleic acid conformations from the sequence. The server offers a variety of methods to explore nucleic acid flexibility, such as a colorless wormlike-chain model, a base-pair resolution mesoscopic model and atomistic molecular dynamics simulations with a wide variety of protocols and force fields. The trajectories obtained by simulations, or imported externally, can be visualized and analyzed using a large number of tools, including standard Cartesian analysis, essential dynamics, helical analysis, local and global stiffness, energy decomposition, principal components and in silico NMR spectra. The server is accessible free of charge from the mmb.irbbarcelona.org/NAFlex webpage.

[1]  F. J. Luque,et al.  The relative flexibility of B-DNA and A-RNA duplexes: database analysis. , 2004, Nucleic acids research.

[2]  Modesto Orozco,et al.  Towards a consensus view of RNA flexibility , 2010 .

[3]  F. J. Luque,et al.  Frontiers in molecular dynamics simulations of DNA. , 2012, Accounts of chemical research.

[4]  G. Hong,et al.  Nucleic Acids Research , 2015, Nucleic Acids Research.

[5]  F. Javier Luque,et al.  Towards a molecular dynamics consensus view of B-DNA flexibility , 2008, Nucleic acids research.

[6]  T Schlick,et al.  Internal motion of supercoiled DNA: brownian dynamics simulations of site juxtaposition. , 1998, Journal of molecular biology.

[7]  H. Al‐Hashimi,et al.  Sequence-specific B-DNA flexibility modulates Z-DNA formation. , 2011, Journal of the American Chemical Society.

[8]  H. Berendsen,et al.  Essential dynamics of proteins , 1993, Proteins.

[9]  F. J. Luque,et al.  Theoretical methods for the simulation of nucleic acids. , 2003, Chemical Society reviews.

[10]  Laxmikant V. Kalé,et al.  Scalable molecular dynamics with NAMD , 2005, J. Comput. Chem..

[11]  J. Šponer,et al.  Refinement of the AMBER Force Field for Nucleic Acids: Improving the Description of α/γ Conformers , 2007 .

[12]  A. Lakshminarayanan,et al.  Stereochemistry of nucleic acids and polynucleotides. II. Allowed conformations of the monomer unit for different ribose puckerings. , 1970, Biochimica et biophysica acta.

[13]  Pau Bernadó,et al.  Human mitochondrial transcription factor A induces a U-turn structure in the light strand promoter , 2011, Nature Structural &Molecular Biology.

[14]  Stuart A. Allison,et al.  Brownian dynamics simulation of wormlike chains. Fluorescence depolarization and depolarized light scattering , 1986 .

[15]  J Langowski,et al.  Sequence-dependent elastic properties of DNA. , 2000, Journal of molecular biology.

[16]  R. Dror,et al.  Improved side-chain torsion potentials for the Amber ff99SB protein force field , 2010, Proteins.

[17]  Tamar Schlick,et al.  A Combined Wormlike-Chain and Bead Model for Dynamic Simulations of Long Linear DNA , 1997 .

[18]  Modesto Orozco,et al.  DNAlive: a tool for the physical analysis of DNA at the genomic scale , 2008, Bioinform..

[19]  T. N. Bhat,et al.  The Protein Data Bank , 2000, Nucleic Acids Res..

[20]  Filip Lankaš Chapter 1:Modelling Nucleic Acid Structure and Flexibility: From Atomic to Mesoscopic Scale , 2012 .

[21]  J. Šponer,et al.  Refinement of the Cornell et al. Nucleic Acids Force Field Based on Reference Quantum Chemical Calculations of Glycosidic Torsion Profiles , 2011, Journal of chemical theory and computation.

[22]  M. Solà,et al.  U-turn DNA bending by human mitochondrial transcription factor A. , 2013, Current opinion in structural biology.

[23]  I. Andricioaei,et al.  Transient Hoogsteen Base Pairs in Canonical Duplex DNA , 2011, Nature.

[24]  Modesto Orozco,et al.  Toward a consensus view of duplex RNA flexibility. , 2010, Biophysical journal.

[25]  Modesto Orozco,et al.  Recent advances in the study of nucleic acid flexibility by molecular dynamics. , 2008, Current opinion in structural biology.

[26]  Modesto Orozco,et al.  FlexServ: an integrated tool for the analysis of protein flexibility , 2009, Bioinform..

[27]  V. Hornak,et al.  Comparison of multiple Amber force fields and development of improved protein backbone parameters , 2006, Proteins.

[28]  W. Olson,et al.  Simulating DNA at low resolution. , 1996, Current opinion in structural biology.

[29]  D. Stigter,et al.  Interactions of highly charged colloidal cylinders with applications to double‐stranded DNA , 1977 .

[30]  Modesto Orozco,et al.  MDWeb and MDMoby: an integrated web-based platform for molecular dynamics simulations , 2012, Bioinform..

[31]  Tomáš Dršata,et al.  Theoretical models of DNA flexibility , 2013 .

[32]  Carsten Kutzner,et al.  GROMACS 4:  Algorithms for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation. , 2008, Journal of chemical theory and computation.

[33]  J. H. Maddocks,et al.  Conformational analysis of nucleic acids revisited: Curves+ , 2009, Nucleic acids research.

[34]  Holger Gohlke,et al.  The Amber biomolecular simulation programs , 2005, J. Comput. Chem..

[35]  Sarah A. Harris,et al.  The atomistic simulation of DNA , 2011 .

[36]  Ioan Andricioaei,et al.  Probing sequence-specific DNA flexibility in a-tracts and pyrimidine-purine steps by nuclear magnetic resonance (13)C relaxation and molecular dynamics simulations. , 2012, Biochemistry.

[37]  D W Hukins,et al.  Structures of synthetic polynucleotides in the A-RNA and A'-RNA conformations: x-ray diffraction analyses of the molecular conformations of polyadenylic acid--polyuridylic acid and polyinosinic acid--polycytidylic acid. , 1973, Journal of molecular biology.

[38]  F. J. Luque,et al.  Data Mining of Molecular Dynamics Trajectories of Nucleic Acids , 2006, Journal of biomolecular structure & dynamics.

[39]  D. Case,et al.  A systematic molecular dynamics study of nearest-neighbor effects on base pair and base pair step conformations and fluctuations in B-DNA , 2009, Nucleic acids research.

[40]  Modesto Orozco,et al.  Exploring polymorphisms in B-DNA helical conformations , 2012, Nucleic acids research.

[41]  Xiang-Jun Lu,et al.  3DNALandscapes: a database for exploring the conformational features of DNA , 2009, Nucleic Acids Res..

[42]  Santiago Costantino,et al.  The mitochondrial transcription factor TFAM coordinates the assembly of multiple DNA molecules into nucleoid-like structures. , 2007, Molecular biology of the cell.

[43]  V. Zhurkin,et al.  DNA sequence-dependent deformability deduced from protein-DNA crystal complexes. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[44]  Tamar Schlick,et al.  Innovations in Biomolecular Modeling and Simulations , 2012 .