On the Most Likely Voronoi Diagram and Nearest Neighbor Searching
暂无分享,去创建一个
[1] Bodo Manthey,et al. Smoothed Analysis of Binary Search Trees and Quicksort under Additive Noise , 2008, MFCS.
[2] Maarten Löffler,et al. Data Imprecision in Computational Geometry , 2009 .
[3] Bernard Chazelle,et al. Quasi-optimal range searching in spaces of finite VC-dimension , 1989, Discret. Comput. Geom..
[4] Charu C. Aggarwal,et al. Managing and Mining Uncertain Data , 2009, Advances in Database Systems.
[5] William S. Evans,et al. Guaranteed Voronoi Diagrams of Uncertain Sites , 2008, CCCG.
[6] Leonidas J. Guibas,et al. Randomized incremental construction of Delaunay and Voronoi diagrams , 1990, Algorithmica.
[7] Subhash Suri,et al. On the Most Likely Convex Hull of Uncertain Points , 2013, ESA.
[8] Mark de Berg,et al. Visibility maps of realistic terrains have linear smoothed complexity , 2009, SCG '09.
[9] Shang-Hua Teng,et al. Smoothed analysis of algorithms: why the simplex algorithm usually takes polynomial time , 2001, STOC '01.
[10] Luc Devroye,et al. A note on the height of binary search trees , 1986, JACM.
[11] Philip S. Yu,et al. A Survey of Uncertain Data Algorithms and Applications , 2009, IEEE Transactions on Knowledge and Data Engineering.
[12] Siddhartha Chaudhuri,et al. Smoothed analysis of probabilistic roadmaps , 2009, Comput. Geom..
[13] Maarten Löffler,et al. Geometric Computations on Indecisive and Uncertain Points , 2012, ArXiv.
[14] Friedhelm Meyer auf der Heide,et al. Smoothed Motion Complexity , 2003, ESA.
[15] Timothy M. Chan,et al. Closest pair and the post office problem for stochastic points , 2011, Comput. Geom..
[16] Maarten Löffler,et al. Largest and Smallest Convex Hulls for Imprecise Points , 2010, Algorithmica.
[17] Christian Sohler,et al. Extreme Points Under Random Noise , 2004, ESA.
[18] Maarten Löffler,et al. Range Searching , 2016, Encyclopedia of Algorithms.
[19] Pankaj K. Agarwal,et al. Nearest-neighbor searching under uncertainty , 2012, PODS.
[20] Pankaj K. Agarwal,et al. Range searching on uncertain data , 2012, TALG.
[21] Bruce A. Reed,et al. The height of a random binary search tree , 2003, JACM.
[22] Christopher Ré,et al. Probabilistic databases: diamonds in the dirt , 2009, CACM.