Cosine‐Weighted B‐Spline Interpolation on the Face‐Centered Cubic Lattice

Cosine‐Weighted B‐spline (CWB) interpolation [ Csé13 ] has been originally proposed for volumetric data sampled on the Body‐Centered Cubic (BCC) lattice. The BCC lattice is well known to be optimal for sampling isotropically band‐limited signals above the Nyquist limit. However, the Face‐Centered Cubic (FCC) lattice has been recently proven to be optimal for low‐rate sampling. The CWB interpolation is a state‐of‐the‐art technique on the BCC lattice, which outperforms, for example, the previously proposed box‐spline interpolation in terms of both efficiency and visual quality. In this paper, we show that CWB interpolation can be adapted to the FCC lattice as well, and results in similarly isotropic signal reconstructions as on the BCC lattice.

[1]  Steve Marschner,et al.  An evaluation of reconstruction filters for volume rendering , 1994, Proceedings Visualization '94.

[2]  Balázs Csébfalvi,et al.  Frequency-Domain Upsampling on a Body-Centered Cubic Lattice for Efficient and High-Quality Volume Rendering , 2009, VMV.

[3]  David S. Ebert,et al.  VolQD: direct volume rendering of multi-million atom quantum dot simulations , 2005, VIS 05. IEEE Visualization, 2005..

[4]  G. Strang,et al.  A Fourier Analysis of the Finite Element Variational Method , 2011 .

[5]  Dimitri Van De Ville,et al.  Practical Box Splines for Reconstruction on the Body Centered Cubic Lattice , 2008, IEEE Transactions on Visualization and Computer Graphics.

[6]  Eduard Gröller,et al.  Optimal regular volume sampling , 2001, Proceedings Visualization, 2001. VIS '01..

[7]  Balázs Csébfalvi,et al.  Retailoring Box Splines to Lattices for Highly Isotropic Volume Representations , 2016, Comput. Graph. Forum.

[8]  Hans R. Künsch,et al.  Optimal lattices for sampling , 2005, IEEE Transactions on Information Theory.

[9]  Balázs Csébfalvi,et al.  Multidimensional Sampling of Isotropically Bandlimited Signals , 2017, IEEE Signal Processing Letters.

[10]  Jörg Peters,et al.  Box Spline Reconstruction On The Face-Centered Cubic Lattice , 2008, IEEE Transactions on Visualization and Computer Graphics.

[11]  David Middleton,et al.  Sampling and Reconstruction of Wave-Number-Limited Functions in N-Dimensional Euclidean Spaces , 1962, Inf. Control..

[12]  Alireza Entezari,et al.  Voronoi Splines , 2010, IEEE Transactions on Signal Processing.

[13]  Markus Hadwiger,et al.  Fast Third-Order Texture Filtering , 2005 .

[14]  Eduard Gröller,et al.  Towards an Unbiased Comparison of CC, BCC, and FCC Lattices in Terms of Prealiasing , 2014, Comput. Graph. Forum.

[15]  Balázs Csébfalvi,et al.  Pass-Band Optimal Reconstruction on the Body-Centered Cubic Lattice , 2008, VMV.

[16]  Balázs Csébfalvi Cosine-Weighted B-Spline Interpolation: A Fast and High-Quality Reconstruction Scheme for the Body-Centered Cubic Lattice , 2013, IEEE Transactions on Visualization and Computer Graphics.

[17]  Moncef Gabbouj,et al.  Calibration of the Marschner-Lobb Signal on CC, BCC, and FCC Lattices , 2012, EuroVis.

[18]  Balázs Csébfalvi An Evaluation of Prefiltered B-Spline Reconstruction for Quasi-Interpolation on the Body-Centered Cubic Lattice , 2010, IEEE Transactions on Visualization and Computer Graphics.

[19]  Matt Pharr,et al.  Gpu gems 2: programming techniques for high-performance graphics and general-purpose computation , 2005 .

[20]  Nancy Argüelles,et al.  Author ' s , 2008 .

[21]  Klaus Mueller,et al.  Efficient LBM Visual Simulation on Face-Centered Cubic Lattices , 2009, IEEE Transactions on Visualization and Computer Graphics.

[22]  Thierry Blu,et al.  Generalized interpolation: Higher quality at no additional cost , 1999, Proceedings 1999 International Conference on Image Processing (Cat. 99CH36348).

[23]  Balázs Csébfalvi,et al.  Tomographic reconstruction on the body-centered cubic lattice , 2015, SCCG.