The Intertwining of Transposable Elements and Non-Coding RNAs

Growing evidence shows a close association of transposable elements (TE) with non-coding RNAs (ncRNA), and a significant number of small ncRNAs originate from TEs. Further, ncRNAs linked with TE sequences participate in a wide-range of regulatory functions. Alu elements in particular are critical players in gene regulation and molecular pathways. Alu sequences embedded in both long non-coding RNAs (lncRNA) and mRNAs form the basis of targeted mRNA decay via short imperfect base-pairing. Imperfect pairing is prominent in most ncRNA/target RNA interactions and found throughout all biological kingdoms. The piRNA-Piwi complex is multifunctional, but plays a major role in protection against invasion by transposons. This is an RNA-based genetic immune system similar to the one found in prokaryotes, the CRISPR system. Thousands of long intergenic non-coding RNAs (lincRNAs) are associated with endogenous retrovirus LTR transposable elements in human cells. These TEs can provide regulatory signals for lincRNA genes. A surprisingly large number of long circular ncRNAs have been discovered in human fibroblasts. These serve as “sponges” for miRNAs. Alu sequences, encoded in introns that flank exons are proposed to participate in RNA circularization via Alu/Alu base-pairing. Diseases are increasingly found to have a TE/ncRNA etiology. A single point mutation in a SINE/Alu sequence in a human long non-coding RNA leads to brainstem atrophy and death. On the other hand, genomic clusters of repeat sequences as well as lncRNAs function in epigenetic regulation. Some clusters are unstable, which can lead to formation of diseases such as facioscapulohumeral muscular dystrophy. The future may hold more surprises regarding diseases associated with ncRNAs andTEs.

[1]  M. Coca-Prados,et al.  Electron microscopic evidence for the circular form of RNA in the cytoplasm of eukaryotic cells , 1979, Nature.

[2]  L. Maquat,et al.  “Alu”strious long ncRNAs and their roles in shortening mRNA half-lives , 2011, Cell cycle.

[3]  Piero Carninci,et al.  Long non-coding antisense RNA controls Uchl1 translation through an embedded SINEB2 repeat , 2012, Nature.

[4]  Georgi K Marinov,et al.  Piwi induces piRNA-guided transcriptional silencing and establishment of a repressive chromatin state. , 2013, Genes & development.

[5]  L. Maquat,et al.  Control of myogenesis by rodent SINE-containing lncRNAs. , 2013, Genes & development.

[6]  C. Cocquerelle,et al.  Mis‐splicing yields circular RNA molecules , 1993, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[7]  Dan Graur,et al.  Alu-containing exons are alternatively spliced. , 2002, Genome research.

[8]  G. Ast,et al.  Alternative splicing of Alu exons—two arms are better than one , 2008, Nucleic acids research.

[9]  M. Inouye,et al.  A unique mechanism regulating gene expression: translational inhibition by a complementary RNA transcript (micRNA). , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[10]  G. Brownlee Sequence of 6S RNA of E. coli. , 1971, Nature: New biology.

[11]  Mark Gerstein,et al.  RSEQtools: a modular framework to analyze RNA-Seq data using compact, anonymized data summaries , 2010, Bioinform..

[12]  M. Gerstein,et al.  RNA-Seq: a revolutionary tool for transcriptomics , 2009, Nature Reviews Genetics.

[13]  David G. Knowles,et al.  The GENCODE v7 catalog of human long noncoding RNAs: Analysis of their gene structure, evolution, and expression , 2012, Genome research.

[14]  L. Maquat,et al.  Staufen2 functions in Staufen1-mediated mRNA decay by binding to itself and its paralog and promoting UPF1 helicase but not ATPase activity , 2012, Proceedings of the National Academy of Sciences.

[15]  H. Kazazian,et al.  Retrotransposons Revisited: The Restraint and Rehabilitation of Parasites , 2008, Cell.

[16]  Valentina Casà,et al.  A repetitive elements perspective in Polycomb epigenetics , 2012, Front. Gene..

[17]  Vetle I. Torvik,et al.  Mammalian microRNAs derived from genomic repeats. , 2005, Trends in genetics : TIG.

[18]  Dipali G. Sashital,et al.  An RNA-induced conformational change required for CRISPR RNA cleavage by the endoribonuclease Cse3 , 2011, Nature Structural &Molecular Biology.

[19]  Xiao Sun,et al.  Origin and evolution of a placental-specific microRNA family in the human genome , 2010, BMC Evolutionary Biology.

[20]  D. Gabellini,et al.  FSHD: copy number variations on the theme of muscular dystrophy , 2010, The Journal of cell biology.

[21]  M. Simonelig Developmental functions of piRNAs and transposable elements , 2011, RNA biology.

[22]  F. Lovat,et al.  Non-Coding RNAs and Cancer , 2013, International journal of molecular sciences.

[23]  A. Spradling,et al.  A novel group of pumilio mutations affects the asymmetric division of germline stem cells in the Drosophila ovary. , 1997, Development.

[24]  Beatrice Bodega,et al.  A Long ncRNA Links Copy Number Variation to a Polycomb/Trithorax Epigenetic Switch in FSHD Muscular Dystrophy , 2012, Cell.

[25]  J. Jurka,et al.  MER53, a non-autonomous DNA transposon associated with a variety of functionally related defense genes in the human genome. , 1998, DNA sequence : the journal of DNA sequencing and mapping.

[26]  Celso A. Espinoza,et al.  Characterization of the structure, function, and mechanism of B2 RNA, an ncRNA repressor of RNA polymerase II transcription. , 2007, RNA.

[27]  J. Hewitt,et al.  Evolutionary conservation of a coding function for D4Z4, the tandem DNA repeat mutated in facioscapulohumeral muscular dystrophy. , 2007, American journal of human genetics.

[28]  Fedor V. Karginov,et al.  The CRISPR system: small RNA-guided defense in bacteria and archaea. , 2010, Molecular cell.

[29]  The secret to 6S: regulating RNA polymerase by ribo‐sequestration , 2009, Molecular microbiology.

[30]  Daniel G. Miller,et al.  RNA transcripts, miRNA-sized fragments and proteins produced from D4Z4 units: new candidates for the pathophysiology of facioscapulohumeral dystrophy. , 2009, Human molecular genetics.

[31]  L. Maquat,et al.  Staufen1 regulates diverse classes of mammalian transcripts , 2007, The EMBO journal.

[32]  C. Gatto,et al.  Comprehensive analysis of microRNA genomic loci identifies pervasive repetitive-element origins , 2011, Mobile genetic elements.

[33]  E. Petricoin,et al.  A Novel Function of RNAs Arising From the Long Terminal Repeat of Human Endogenous Retrovirus 9 in Cell Cycle Arrest , 2012, Journal of Virology.

[34]  I. King Jordan,et al.  A Family of Human MicroRNA Genes from Miniature Inverted-Repeat Transposable Elements , 2007, PloS one.

[35]  I. K. Jordan,et al.  Origin and Evolution of Human microRNAs From Transposable Elements , 2007, Genetics.

[36]  G. Storz,et al.  6S RNA Regulates E. coli RNA Polymerase Activity , 2000, Cell.

[37]  Y. Siregar Oncogene and Cancer - From Bench to Clinic , 2013 .

[38]  Albert J R Heck,et al.  RNA-guided complex from a bacterial immune system enhances target recognition through seed sequence interactions , 2011, Proceedings of the National Academy of Sciences.

[39]  Erik Holmqvist,et al.  A mixed double negative feedback loop between the sRNA MicF and the global regulator Lrp , 2012, Molecular microbiology.

[40]  J. Kjems,et al.  Natural RNA circles function as efficient microRNA sponges , 2013, Nature.

[41]  F. Muntoni,et al.  Multiple exon skipping and RNA circularisation contribute to the severe phenotypic expression of exon 5 dystrophin deletion , 2003, Journal of medical genetics.

[42]  Sebastian D. Mackowiak,et al.  Circular RNAs are a large class of animal RNAs with regulatory potency , 2013, Nature.

[43]  B. Emanuel Molecular mechanisms and diagnosis of chromosome 22q11.2 rearrangements. , 2008, Developmental disabilities research reviews.

[44]  N. Delihas,et al.  Secondary structures of Escherichia coli antisense micF RNA, the 5'-end of the target ompF mRNA, and the RNA/RNA duplex. , 1995, Biochemistry.

[45]  J. Goodrich,et al.  B2 RNA and Alu RNA repress transcription by disrupting contacts between RNA polymerase II and promoter DNA within assembled complexes , 2009, Proceedings of the National Academy of Sciences.

[46]  C. Wijmenga,et al.  Chromosome 4q DNA rearrangements associated with facioscapulohumeral muscular dystrophy , 1992, Nature genetics.

[47]  G. Ast,et al.  Multifactorial Interplay Controls the Splicing Profile of Alu-Derived Exons , 2008, Molecular and Cellular Biology.

[48]  E. Devor,et al.  Marsupial-specific microRNAs evolved from marsupial-specific transposable elements. , 2009, Gene.

[49]  Kathleen R. Cho,et al.  Scrambled exons , 1991, Cell.

[50]  M. Batzer,et al.  Repetitive Elements May Comprise Over Two-Thirds of the Human Genome , 2011, PLoS genetics.

[51]  Allan I. Levey,et al.  Oxidative Modifications and Down-regulation of Ubiquitin Carboxyl-terminal Hydrolase L1 Associated with Idiopathic Parkinson's and Alzheimer's Diseases* , 2004, Journal of Biological Chemistry.

[52]  P. Zaphiropoulos,et al.  Circular RNAs from transcripts of the rat cytochrome P450 2C24 gene: correlation with exon skipping. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[53]  M. Inouye,et al.  The function of micF RNA. micF RNA is a major factor in the thermal regulation of OmpF protein in Escherichia coli. , 1989, The Journal of biological chemistry.

[54]  Schraga Schwartz,et al.  Alu Exonization Events Reveal Features Required for Precise Recognition of Exons by the Splicing Machinery , 2009, PLoS Comput. Biol..

[55]  Rebecca J. Oakey,et al.  Transposable Elements Re-Wire and Fine-Tune the Transcriptome , 2013, PLoS genetics.

[56]  D. Glavač,et al.  Long Non-Coding RNA in Cancer , 2013, International journal of molecular sciences.

[57]  J. Goodrich,et al.  Genomic Gems: Sine Rnas Regulate Mrna Production This Review Comes from a Themed Issue on Chromosomes and Expression Mechanisms Edited , 2022 .

[58]  Alexander Rich,et al.  Widespread A-to-I RNA Editing of Alu-Containing mRNAs in the Human Transcriptome , 2004, PLoS biology.

[59]  K. Mitsuya,et al.  Role for piRNAs and Noncoding RNA in de Novo DNA Methylation of the Imprinted Mouse Rasgrf1 Locus , 2011, Science.

[60]  J E Hewitt,et al.  Analysis of the tandem repeat locus D4Z4 associated with facioscapulohumeral muscular dystrophy. , 1994, Human molecular genetics.

[61]  Michael K. Slevin,et al.  Circular RNAs are abundant, conserved, and associated with ALU repeats. , 2013, RNA.

[62]  Jay C D Hinton,et al.  Superfolder GFP reporters validate diverse new mRNA targets of the classic porin regulator, MicF RNA , 2012, Molecular microbiology.

[63]  I. Ferrer,et al.  Reduced ubiquitin C-terminal hydrolase-1 expression levels in dementia with Lewy bodies , 2006, Neurobiology of Disease.

[64]  Kyudong Han,et al.  The novel MER transposon-derived miRNAs in human genome. , 2013, Gene.

[65]  G. Ast,et al.  Intronic Alus Influence Alternative Splicing , 2008, PLoS genetics.

[66]  Albert Vernon Smith,et al.  The distribution of a germline methylation marker suggests a regional mechanism of LINE-1 silencing by the piRNA-PIWI system , 2012, BMC Genetics.

[67]  Fariza Tahi,et al.  ncRNAclassifier: a tool for detection and classification of transposable element sequences in RNA hairpins , 2012, BMC Bioinformatics.

[68]  J. Lytton,et al.  A Circularized Sodium-Calcium Exchanger Exon 2 Transcript* , 1999, The Journal of Biological Chemistry.

[69]  Peter Goodfellow,et al.  Circular transcripts of the testis-determining gene Sry in adult mouse testis , 1993, Cell.

[70]  K. Wassarman 6S RNA: a regulator of transcription , 2007, Molecular microbiology.

[71]  L. Maquat,et al.  Staufen1 dimerizes via a conserved motif and a degenerate dsRNA-binding domain to promote mRNA decay , 2013, Nature Structural &Molecular Biology.

[72]  Gregory J. Hannon,et al.  Small RNAs as Guardians of the Genome , 2009, Cell.

[73]  Musaddeque Ahmed,et al.  Transposable Elements Are a Significant Contributor to Tandem Repeats in the Human Genome , 2012, Comparative and functional genomics.

[74]  J. Goodrich,et al.  B 2 RNA represses TFIIH phosphorylation of RNA polymerase II , 2011 .

[75]  Manolis Kellis,et al.  Discrete Small RNA-Generating Loci as Master Regulators of Transposon Activity in Drosophila , 2007, Cell.

[76]  J. Goodrich,et al.  B2 RNA represses TFIIH phosphorylation of RNA polymerase II , 2011, Transcription.

[77]  Dan Graur,et al.  kinase localization of a novel catalytic subunit of casein Translated Alu sequence determines nuclear , 2002 .

[78]  David R. Kelley,et al.  Transposable elements reveal a stem cell-specific class of long noncoding RNAs , 2012, Genome Biology.

[79]  H. Hundley,et al.  Inverted Alu dsRNA structures do not affect localization but can alter translation efficiency of human mRNAs independent of RNA editing , 2012, Nucleic acids research.

[80]  John S Mattick,et al.  Rocking the foundations of molecular genetics , 2012, Proceedings of the National Academy of Sciences.

[81]  Nadav S. Bar,et al.  Landscape of transcription in human cells , 2012, Nature.

[82]  Hongde Liu,et al.  MicroRNA Genes Derived from Repetitive Elements and Expanded by Segmental Duplication Events in Mammalian Genomes , 2011, PloS one.

[83]  International Human Genome Sequencing Consortium Initial sequencing and analysis of the human genome , 2001, Nature.

[84]  Mary F. Lopez,et al.  Protein interactions with piALU RNA indicates putative participation of retroRNA in the cell cycle, DNA repair and chromatin assembly , 2012, Mobile genetic elements.

[85]  A. Munnich,et al.  Mutation in a primate-conserved retrotransposon reveals a noncoding RNA as a mediator of infantile encephalopathy , 2012, Proceedings of the National Academy of Sciences.

[86]  Charles Gawad,et al.  Circular RNAs Are the Predominant Transcript Isoform from Hundreds of Human Genes in Diverse Cell Types , 2012, PloS one.

[87]  Martin J. Simard,et al.  Function, Targets, and Evolution of Caenorhabditis elegans piRNAs , 2012, Science.

[88]  L. Maquat,et al.  lncRNAs transactivate Staufen1-mediated mRNA decay by duplexing with 3'UTRs via Alu elements , 2010, Nature.