Incoherent Beam Combining of Continuous-Wave and Pulsed Yb-Doped Fiber Amplifiers

We review the technique of incoherent beam combining and show experimentally the combination of four continuous wave fiber amplifiers to an average power of 2 kW and four pulsed 2 ns fiber amplifiers to an average power of 187 W (pulse energy 3.7 mJ) using binary dielectric gratings. The scaling potential and limitations are discussed in detail.

[1]  J. Rothhardt,et al.  Extended single-mode photonic crystal fiber lasers. , 2006, Optics express.

[2]  Anping Liu,et al.  Spectrally Beam-Combined Fiber Lasers for High-Average-Power Applications , 2007, IEEE Journal of Selected Topics in Quantum Electronics.

[3]  Tino Eidam,et al.  Gain Limitations and Consequences for Short Length Fiber Amplifiers , 2008 .

[4]  F. Röser,et al.  Spectral combining of pulsed fiber lasers: scaling considerations , 2008, SPIE LASE.

[5]  Jens Limpert,et al.  Spectral beam combining of Yb-doped fiber lasers with high efficiency , 2007 .

[6]  A Tünnermann,et al.  187 W, 3.7 mJ from spectrally combined pulsed 2 ns fiber amplifiers. , 2009, Optics letters.

[7]  Jens Limpert,et al.  Highly efficient transmission gratings in fused silica for chirped-pulse amplification systems. , 2003, Applied optics.

[8]  R. Aggarwal,et al.  Wavelength beam combining of ytterbium fiber lasers. , 2003, Optics letters.

[9]  Almantas Galvanauskas,et al.  High-energy and high-peak-power nanosecond pulse generation with beam quality control in 200-microm core highly multimode Yb-doped fiber amplifiers. , 2005, Optics letters.

[10]  J. Limpert,et al.  2 kW incoherent beam combining of four narrow-linewidth photonic crystal fiber amplifiers. , 2009, Optics express.

[11]  Arlee V. Smith,et al.  Numerical modeling of self-focusing beams in fiber amplifiers , 2007, SPIE LASE.

[12]  J. Rothhardt,et al.  Millijoule pulse energy Q-switched short-length fiber laser. , 2007, Optics letters.

[13]  Tso Yee Fan,et al.  Beam combining of ytterbium fiber amplifiers (Invited) , 2007 .

[14]  J P Donnelly,et al.  Near-diffraction-limited diode laser arrays by wavelength beam combining. , 2005, Optics letters.

[15]  T. Fan Laser beam combining for high-power, high-radiance sources , 2005, IEEE Journal of Selected Topics in Quantum Electronics.

[16]  Jens Limpert,et al.  1 kW narrow-linewidth fiber amplifier for spectral beam combining , 2008 .

[18]  Govind P. Agrawal,et al.  Nonlinear Fiber Optics , 1989 .

[19]  J. Limpert,et al.  Stress-induced single-polarization single-transverse mode photonic crystal fiber with low nonlinearity. , 2005, Optics express.

[20]  Jens Limpert,et al.  The renaissance and bright future of fibre lasers , 2005 .

[21]  Vadim Smirnov,et al.  Efficient power scaling of laser radiation by spectral beam combining. , 2008, Optics letters.

[22]  J. Rothhardt,et al.  Millijoule pulse energy high repetition rate femtosecond fiber chirped-pulse amplification system. , 2007, Optics letters.

[23]  J. Limpert,et al.  The Rising Power of Fiber Lasers and Amplifiers , 2007, IEEE Journal of Selected Topics in Quantum Electronics.

[24]  R. Beach,et al.  Analysis of the scalability of diffraction-limited fiber lasers and amplifiers to high average power. , 2008, Optics express.

[25]  John D. Minelly,et al.  Four-Channel, High Power, Passively Phase Locked Fiber Array , 2008 .

[26]  S. Nolte,et al.  High-power air-clad large-mode-area photonic crystal fiber laser , 2003, Conference on Lasers and Electro-Optics, 2003. CLEO '03..

[27]  Christopher D. Brooks,et al.  Multimegawatt peak-power, single-transverse-mode operation of a 100μm core diameter, Yb-doped rodlike photonic crystal fiber amplifier , 2006 .

[28]  A. Galvanauskas,et al.  Spatial-dispersion-free spectral beam combining of high power pulsed Yb-doped fiber lasers , 2008, 2008 Conference on Lasers and Electro-Optics and 2008 Conference on Quantum Electronics and Laser Science.

[29]  T Y Fan,et al.  Spectral beam combining of a broad-stripe diode laser array in an external cavity. , 2000, Optics letters.