A Dual-Response Approach to Robust Parameter Design for a Generalized Linear Model

Robust Parameter Design (RPD) has been used extensively in industrial experiments since its introduction by Genichi Taguchi. RPD has been studied and applied, in most cases, assuming a linear model under standard assumptions. More recently, RPD has been considered in a generalized linear model (GLM) setting. In this paper, we apply a general dual-response approach when using RPD in the case of a GLM. We motivate the need for exploring both the process mean and process variance by discussing situations when a compromise between the two is necessary. Several examples are provided in order to further motivate the need for applying a dual-response approach when applying RPD in the case of a GLM.

[1]  P. McCullagh,et al.  Generalized Linear Models , 1972, Predictive Analytics.

[2]  Neil R. Ullman,et al.  Signal-to-noise ratios, performance criteria, and transformations , 1988 .

[3]  Madhan Shridhar Phadke,et al.  Quality Engineering Using Robust Design , 1989 .

[4]  G. Geoffrey Vining,et al.  Combining Taguchi and Response Surface Philosophies: A Dual Response Approach , 1990 .

[5]  Jerome Sacks,et al.  Computer Experiments for Quality Control by Parameter Design , 1990 .

[6]  John A. Nelder,et al.  Generalized linear models for the analysis of Taguchi-type experiments , 1991 .

[7]  Kwok-Leung Tsui,et al.  Economical experimentation methods for robust design , 1991 .

[8]  G. Geoffrey Vining,et al.  Taguchi's parameter design: a panel discussion , 1992 .

[9]  R. H. Myers,et al.  Response Surface Alternatives to the Taguchi Robust Parameter Design Approach , 1992 .

[10]  Douglas C. Montgomery,et al.  A Nonlinear Programming Solution to the Dual Response Problem , 1993 .

[11]  D. Depriest,et al.  Understanding Industrial Designed Experiments , 1993 .

[12]  James M. Lucas,et al.  How to Achieve a Robust Process Using Response Surface Methodology , 1994 .

[13]  Wanzhu Tu,et al.  Dual response surface optimization , 1995 .

[14]  Douglas C. Montgomery,et al.  Response Surface Methodology: Process and Product Optimization Using Designed Experiments , 1995 .

[15]  Megan Pledger Observable Uncontrollable Factors in Parameter Design , 1996 .

[16]  J. Engel,et al.  A generalized linear modeling approach to robust design , 1996 .

[17]  R. H. Myers,et al.  A TUTORIAL ON GENERALIZED LINEAR MODELS , 1997 .

[18]  James M. Lucas,et al.  Designs of mixed resolution for process robustness studies , 1997 .

[19]  J. Nelder,et al.  Generalized Linear Models for Quality-Improvement Experiments , 1997 .

[20]  John A. Nelder,et al.  Generalized linear models for the analysis of quality‐improvement experiments , 1998 .

[21]  R. H. Myers,et al.  Examples of Designed Experiments with Nonnormal Responses , 2001 .

[22]  Eric R. Ziegel,et al.  Generalized Linear Models , 2002, Technometrics.

[23]  John A. Nelder,et al.  Robust Design via Generalized Linear Models , 2003 .

[24]  N. Doganaksoy,et al.  Joint Optimization of Mean and Standard Deviation Using Response Surface Methods , 2003 .