SECOND-ORDER ESTIMATES AND REGULARITY FOR FULLY NONLINEAR ELLIPTIC EQUATIONS ON RIEMANNIAN MANIFOLDS

We derive a priori second order estimates for solutions of a class of fully nonlinear elliptic equations on Riemannian manifolds under some very general structure conditions. We treat both equations on closed manifolds, and the Dirichlet problem on manifolds with boundary without any geometric restrictions to the boundary except being smooth and compact. As applications of these estimates we obtain results on regularity and existence.

[1]  Bo Guan,et al.  The dirichlet problem for a class of fully nonlinear elliptic equations , 1994 .

[2]  J. Spruck,et al.  The dirichlet problem for nonlinear second‐order elliptic equations. II. Complex monge‐ampère, and uniformaly elliptic, equations , 1985 .

[3]  Yanyan Li Some existence results for fully nonlinear elliptic equations of monge‐ampère type , 1990 .

[4]  Jeff A. Viaclovsky,et al.  Fully nonlinear equations on Riemannian manifolds with negative curvature , 2002, math/0210303.

[5]  Xinghua Gao,et al.  Symmetric Spaces , 2014 .

[6]  J. Urbas Hessian equations on compact Riemannian manifolds , 2002 .

[7]  Gerhard Huisken,et al.  Mean curvature flow with surgeries of two–convex hypersurfaces , 2009 .

[8]  N. Krylov,et al.  BOUNDEDLY NONHOMOGENEOUS ELLIPTIC AND PARABOLIC EQUATIONS IN A DOMAIN , 1984 .

[9]  N. M. Ivočkina THE INTEGRAL METHOD OF BARRIER FUNCTIONS AND THE DIRICHLET PROBLEM FOR EQUATIONS WITH OPERATORS OF MONGE-AMPÈRE TYPE , 1981 .

[10]  Yanyan Li,et al.  On some conformally invariant fully nonlinear equations , 2003, math/0304393.

[11]  N. Trudinger,et al.  On some inequalities for elementary symmetric functions , 1994, Bulletin of the Australian Mathematical Society.

[12]  Bo Guan The Dirichlet problem for Monge-Ampère equations in non-convex domains and spacelike hypersurfaces of constant Gauss curvature , 1998 .

[13]  Guofang Wei,et al.  Comparison geometry for the Bakry-Emery Ricci tensor , 2007, 0706.1120.

[14]  The Yamabe problem for higher order curvatures , 2005, math/0505463.

[15]  Jeff A. Viaclovsky,et al.  Prescribing symmetric functions of the eigenvalues of the Ricci tensor , 2004, math/0409187.

[16]  Xiuxiong Chen The Space of Kähler Metrics , 2000 .

[17]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[18]  Friedrich Sauvigny,et al.  Partial Differential Equations 2 , 2012 .

[19]  J. Spruck,et al.  Hypersurfaces of Constant Curvature in Hyperbolic Space I , 2008, 1010.4008.

[20]  L. Lempert,et al.  Geodesics in the space of Kähler metrics , 2011, 1105.2188.

[21]  A priori interior gradient bounds for solutions to elliptic Weingarten equations , 1987 .

[22]  James Serrin,et al.  The problem of dirichlet for quasilinear elliptic differential equations with many independent variables , 1969, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[23]  E. Calabi,et al.  The Space of K\"ahler metrics (II) , 2001, math/0108162.

[24]  J. Spruck,et al.  Boundary value problems for surfaces of constant Gauss Curvature , 1992 .

[25]  Ben Andrews,et al.  Contraction of convex hypersurfaces in Euclidean space , 1994 .

[26]  Matthew J. Gursky,et al.  An equation of Monge-Ampère type in conformal geometry, and four-manifolds of positive Ricci curvature , 2002 .

[27]  Bo Guan A correction to “The Dirichlet problem for complex Monge–Ampère equations and regularity of the pluri-complex Green function” , 2000 .

[28]  Luis A. Caffarelli,et al.  The Dirichlet problem for nonlinear second-order elliptic equations I , 1984 .

[29]  Xu-jia Wang,et al.  A variational theory of the Hessian equation , 2001 .

[30]  Hessian measures II , 1999, math/9909199.

[31]  J. Spruck,et al.  On the existence of convex hypersurfaces of constant Gauss curvature in hyperbolic space , 1994 .

[32]  Joel Spruck,et al.  The Existence of Hypersurfaces of Constant Gauss Curvature with Prescribed Boundary , 2002 .

[33]  Jun Yu Li,et al.  Advances in geometric analysis , 2012 .

[34]  Guofang Wang Mathematik in den Naturwissenschaften Leipzig A fully nonlinear conformal flow on locally conformally flat manifolds by Pengfei Guan and , 2003 .

[35]  N. Trudinger,et al.  The Dirichlet Problem for Degenerate Hessian Equations , 2005 .

[36]  Pengfei Guan Remarks on the Homogeneous Complex Monge-Ampère Equation , 2010 .

[37]  N. Trudinger,et al.  Hessian measures I , 1997 .

[38]  Paul Yang,et al.  An a priori estimate for a fully nonlinear equation on four-manifolds , 2002 .

[39]  Neil S. Trudinger,et al.  On the Dirichlet problem for Hessian equations , 1995 .

[40]  Zheng-chao Han Local pointwise estimates for solutions of the σ2 curvature equation on 4-manifolds , 2004 .

[41]  Pengfei Guan,et al.  The Christoffel-Minkowski problem I: Convexity of solutions of a Hessian equation , 2003 .

[42]  N. Trudinger The Dirichlet problem for the prescribed curvature equations , 1990 .

[43]  J. Spruck,et al.  The Dirichlet problem for nonlinear second order elliptic equations, III: Functions of the eigenvalues of the Hessian , 1985 .

[44]  Yanyan Li,et al.  MongeAmpre Equations on Riemannian Manifolds , 1996 .

[45]  YanYan Li,et al.  On some conformally invariant fully nonlinear equations, II. Liouville, Harnack and Yamabe , 2004, math/0403442.

[46]  On a fully nonlinear Yamabe problem , 2005, math/0505257.

[47]  Jeff A. Viaclovsky Estimates and Existence Results for some Fully Nonlinear Elliptic Equations on Riemannian Manifolds , 2001, math/0104227.

[48]  Guofang Wang,et al.  Local estimates for a class of fully nonlinear equations arising from conformal geometry , 2003 .

[49]  Yanyan Li Interior gradient estimates for solutions of certain fully nonlinear elliptic equations , 1991 .

[50]  Joel Spruck,et al.  Locally convex hypersurfaces of constant curvature with boundary , 2004 .

[51]  P. Bassanini,et al.  Elliptic Partial Differential Equations of Second Order , 1997 .

[52]  Bo Guan The Dirichlet problem for Hessian equations on Riemannian manifolds , 1999 .

[53]  T. Y. Thomas On Conformal Geometry. , 1926, Proceedings of the National Academy of Sciences of the United States of America.

[54]  Local estimates for some fully nonlinear elliptic equations , 2005, math/0510652.

[55]  Zbigniew BÃlocki ON GEODESICS IN THE SPACE OF KÄHLER METRICS , 2011 .

[56]  Jiayu Li,et al.  Deforming metrics with negative curvature by a fully nonlinear flow , 2005 .

[57]  Jeff A. Viaclovsky Conformal geometry, contact geometry, and the calculus of variations , 2000 .

[58]  L. Lempert,et al.  C V ] 4 M ay 2 01 2 WEAK GEODESICS IN THE SPACE OF KÄHLER METRICS , 2014 .