Experimental investigation on thermal performance of aluminum vapor chamber using micro-grooved wick with reentrant cavity array

[1]  Jinliang Xu,et al.  Integrated flat heat pipe with a porous network wick for high-heat-flux electronic devices , 2017 .

[2]  Yong Tang,et al.  Fabrication and capillary characterization of micro-grooved wicks with reentrant cavity array , 2017 .

[3]  Christopher Yu Hang Chao,et al.  Experimental investigation of a passive thermal management system for high-powered lithium ion batteries using nickel foam-paraffin composite , 2016 .

[4]  Xiaogang Jin,et al.  Experimental investigate on thermal properties of a novel high temperature flat heat pipe receiver in solar power tower plant , 2016 .

[5]  A. Jain,et al.  Experimental and numerical investigation of core cooling of Li-ion cells using heat pipes , 2016 .

[6]  J. Danielewicz,et al.  The performance of a novel flat heat pipe based thermal and PV/T (photovoltaic and thermal systems) solar collector that can be used as an energy-active building envelope material , 2016 .

[7]  Rangga Aji Pamungkas,et al.  Experimental investigation on performance of lithium-ion battery thermal management system using flat plate loop heat pipe for electric vehicle application , 2016 .

[8]  Tsung-Yi Yang,et al.  A novel flat polymer heat pipe with thermal via for cooling electronic devices , 2015 .

[9]  Wangyu Liu,et al.  The performance of the novel vapor chamber based on the leaf vein system , 2015 .

[10]  Ri-Guang Chi,et al.  Heat Pipe-Assisted Thermoelectric Power Generation Technology for Waste Heat Recovery , 2015, Journal of Electronic Materials.

[11]  Hussam Jouhara,et al.  Heat pipe based thermal management systems for energy-efficient data centres , 2014 .

[12]  G. Xia,et al.  Gas–liquid two-phase flow patterns in microchannels with reentrant cavities in sidewall , 2014 .

[13]  Jun Li,et al.  Thermodynamic assessment of active cooling/heating methods for lithium-ion batteries of electric vehicles in extreme conditions , 2014 .

[14]  Yong Tang,et al.  A multi-artery vapor chamber and its performance , 2013 .

[15]  Hao Peng,et al.  Study on heat transfer performance of an aluminum flat plate heat pipe with fins in vapor chamber , 2013 .

[16]  Zhongliang Liu,et al.  An experimental study of boiling and condensation co-existing phase change heat transfer in small confined space , 2013 .

[17]  Shung-Wen Kang,et al.  Experimental studies of thermal resistance in a vapor chamber heat spreader , 2013 .

[18]  Shung-Wen Kang,et al.  Feasibility study of an aluminum vapor chamber with radial grooved and sintered powders wick structures , 2013 .

[19]  J. Weibel,et al.  Experimental Characterization of Capillary-Fed Carbon Nanotube Vapor Chamber Wicks , 2013 .

[20]  P. Naphon,et al.  Application of two-phase vapor chamber technique for hard disk drive cooling of PCs , 2013 .

[21]  K. Kim,et al.  Enhanced heat transfer performance of alumina sponge-like nano-porous structures through surface wettability control in nucleate pool boiling , 2012 .

[22]  K. Kim,et al.  Morphological change of plain and nano-porous surfaces during boiling and its effect on nucleate pool boiling heat transfer , 2012 .

[23]  Jinliang Xu,et al.  Copper foam based vapor chamber for high heat flux dissipation , 2012 .

[24]  Frédéric Lefèvre,et al.  Experimental investigations of flat plate heat pipes with screen meshes or grooves covered with screen meshes as capillary structure , 2012 .

[25]  Yunfeng Shi,et al.  Wetting transparency of graphene. , 2012, Nature materials.

[26]  J. Murthy,et al.  Wicking and thermal characteristics of micropillared structures for use in passive heat spreaders , 2012 .

[27]  Jung-Chang Wang Thermal investigations on LED vapor chamber-based plates , 2011 .

[28]  Tien-Li Chang,et al.  Experimental Analysis for Thermal Performance of a Vapor Chamber Applied to High-Performance Servers , 2011 .

[29]  H. Liem,et al.  Thermal Investigation and Placement Design of High-Brightness LED Array Package on PCB for Uniform Illuminance , 2011 .

[30]  H. Liem,et al.  Thermal performance of high brightness LED array package on PCB , 2010 .

[31]  Hung-Yi Li,et al.  Thermal performance of plate-fin vapor chamber heat sinks☆ , 2010 .

[32]  Jung-Chang Wang Development of vapour chamber‐based VGA thermal module , 2010 .

[33]  F. Lefèvre,et al.  Confocal Microscopy for Capillary Film Measurements in a Flat Plate Heat Pipe , 2010 .

[34]  Shwin-Chung Wong,et al.  Performance tests on a novel vapor chamber , 2009, 2009 4th International Microsystems, Packaging, Assembly and Circuits Technology Conference.

[35]  Stéphane Lips,et al.  Nucleate boiling in a flat grooved heat pipe , 2009 .

[36]  T. Fisher,et al.  Effects of carbon nanotube coating on flow boiling in a micro-channel , 2009 .

[37]  Suyi Huang,et al.  Thermal analysis and optimization of multiple LED packaging based on a general analytical solution , 2009, 2009 59th Electronic Components and Technology Conference.

[38]  Samuel Graham,et al.  Thermal effects in packaging high power light emitting diode arrays , 2009 .

[39]  Y. Peles,et al.  Bubble Dynamics During Boiling in Enhanced Surface Microchannels , 2006, Journal of Microelectromechanical Systems.

[40]  Ali Koşar,et al.  Boiling heat transfer in rectangular microchannels with reentrant cavities , 2005 .

[41]  Jeung Sang Go,et al.  Quantitative thermal performance evaluation of a cost-effective vapor chamber heat sink containing a metal-etched microwick structure for advanced microprocessor cooling , 2005 .

[42]  Chester G. Motloch,et al.  Power fade and capacity fade resulting from cycle-life testing of Advanced Technology Development Program lithium-ion batteries , 2003 .

[43]  Ioan Sauciuc,et al.  Spreading in the heat sink base: phase change systems or solid metals?? , 2002 .

[44]  B. Popov,et al.  Capacity fade of Sony 18650 cells cycled at elevated temperatures: Part I. Cycling performance , 2002 .

[45]  W. B. Johnson,et al.  High-speed visualization of boiling from an enhanced structure , 2002 .

[46]  Sun Wook Kim,et al.  Development of battery management system for nickel–metal hydride batteries in electric vehicle applications , 2002 .

[47]  Yiding Cao,et al.  Wickless network heat pipes for high heat flux spreading applications , 2002 .

[48]  Ralph E. White,et al.  Capacity Fade Mechanisms and Side Reactions in Lithium‐Ion Batteries , 1998 .

[49]  J. P. Holman,et al.  Experimental methods for engineers , 1971 .