Explicit filtering equations for labelled random finite sets

We decompose a probability density function (PDF) of a labelled random finite set (RFS) into a probability mass function over a set of labels and a PDF on a vector-valued multitarget state given the labels. Using this decomposition, we write the Bayesian filtering recursion for labelled RFSs in an explicit form. The resulting formulas are of conceptual and practical interest in the RFS approach to multiple target tracking, especially, for track-before-detect particle filter implementations.

[1]  Ba-Ngu Vo,et al.  Labeled Random Finite Sets and the Bayes Multi-Target Tracking Filter , 2013, IEEE Transactions on Signal Processing.

[2]  Ángel F. García-Fernández,et al.  MCMC-based posterior independence approximation for RFS multitarget particle filters , 2014, 17th International Conference on Information Fusion (FUSION).

[3]  Anna Freud,et al.  Design And Analysis Of Modern Tracking Systems , 2016 .

[4]  Ba-Ngu Vo,et al.  Tracking an unknown time-varying number of speakers using TDOA measurements: a random finite set approach , 2006, IEEE Transactions on Signal Processing.

[5]  Y. Boers,et al.  Multitarget particle filter track before detect application , 2004 .

[6]  Ángel F. García-Fernández,et al.  Two-Layer Particle Filter for Multiple Target Detection and Tracking , 2013, IEEE Transactions on Aerospace and Electronic Systems.

[7]  S.S. Blackman,et al.  Multiple hypothesis tracking for multiple target tracking , 2004, IEEE Aerospace and Electronic Systems Magazine.

[8]  R. Mahler Multitarget Bayes filtering via first-order multitarget moments , 2003 .

[9]  Yaakov Bar-Shalom,et al.  Sonar tracking of multiple targets using joint probabilistic data association , 1983 .

[10]  Ronald P. S. Mahler,et al.  Statistical Multisource-Multitarget Information Fusion , 2007 .

[11]  John G. Proakis,et al.  Probability, random variables and stochastic processes , 1985, IEEE Trans. Acoust. Speech Signal Process..

[12]  Vikram Krishnamurthy,et al.  Multitarget Tracking Using Multiple Hypothesis Tracking , 2012 .

[13]  A. Doucet,et al.  Sequential Monte Carlo methods for multitarget filtering with random finite sets , 2005, IEEE Transactions on Aerospace and Electronic Systems.

[14]  Branko Ristic,et al.  Beyond the Kalman Filter: Particle Filters for Tracking Applications , 2004 .

[15]  Hoon Kim,et al.  Monte Carlo Statistical Methods , 2000, Technometrics.

[16]  Peter Willett,et al.  Shooting two birds with two bullets: How to find Minimum Mean OSPA estimates , 2010, 2010 13th International Conference on Information Fusion.

[17]  Ba-Ngu Vo,et al.  On performance evaluation of multi-object filters , 2008, 2008 11th International Conference on Information Fusion.

[18]  Ba-Ngu Vo,et al.  A Consistent Metric for Performance Evaluation of Multi-Object Filters , 2008, IEEE Transactions on Signal Processing.

[19]  Ba-Ngu Vo,et al.  Labeled Random Finite Sets and Multi-Object Conjugate Priors , 2013, IEEE Transactions on Signal Processing.

[20]  Ángel F. García-Fernández,et al.  Multitarget tracking using the Joint Multitrack Probability Density , 2009, 2009 12th International Conference on Information Fusion.

[21]  David Suter,et al.  Joint Detection and Estimation of Multiple Objects From Image Observations , 2010, IEEE Transactions on Signal Processing.

[22]  Jianyu Yang,et al.  A Computationally Efficient Particle Filter for Multitarget Tracking Using an Independence Approximation , 2013, IEEE Transactions on Signal Processing.

[23]  Ronald P. S. Mahler,et al.  Advances in Statistical Multisource-Multitarget Information Fusion , 2014 .

[24]  Vikram Krishnamurthy,et al.  Integrated Tracking, Classification, and Sensor Management , 2013 .