Low Dynamic Power High Performance Adder

This paper presents the design of high performance low dynamic power circuits using a new CMOS dynamic logic family, and analyzes power and performance of them, and compares the proposed logic to standard CMOS dynamic logic. Results show that the dynamic power reduces at least 26% and the performance improves at least 4.6 times for a 32 bits ripple carry adder in comparison to standard domino logic. In other hand charge redistribution, limitation of non-inverting only logic and need for output inverter problems of domino logic are completely eliminated.

[1]  R. Krishnamurthy,et al.  A 4 GHz 130 nm address generation unit with 32-bit sparse-tree adder core , 2002, 2002 Symposium on VLSI Circuits. Digest of Technical Papers (Cat. No.02CH37302).

[2]  Saeid Nooshabadi,et al.  High performance low power CMOS dynamic logic for arithmetic circuits , 2007, Microelectron. J..

[3]  Jaume Segura,et al.  A compact gate-level energy and delay model of dynamic CMOS gates , 2005, IEEE Transactions on Circuits and Systems II: Express Briefs.

[4]  Kamran Eshraghian,et al.  Principles of CMOS VLSI Design: A Systems Perspective , 1985 .

[5]  S. Vangal,et al.  A 5 GHz floating point multiply-accumulator in 90 nm dual V/sub T/ CMOS , 2003, 2003 IEEE International Solid-State Circuits Conference, 2003. Digest of Technical Papers. ISSCC..

[6]  A. L. Fisher,et al.  Ultrafast compact 32-bit CMOS adders in multiple-output domino logic , 1989 .

[7]  Saeid Nooshabadi,et al.  Fast feedthrough logic: a high performance logic family for GaAs , 2004, IEEE Transactions on Circuits and Systems I: Regular Papers.

[8]  Jan M. Rabaey,et al.  Digital Integrated Circuits: A Design Perspective , 1995 .

[9]  Chingwei Yeh,et al.  Fast and compact dynamic ripple carry adder design , 2002, Proceedings. IEEE Asia-Pacific Conference on ASIC,.

[10]  Wolfgang Fichtner,et al.  Low-power logic styles: CMOS versus pass-transistor logic , 1997, IEEE J. Solid State Circuits.

[11]  M. Sachdev,et al.  Dual supply voltage clocking for 5 GHz 130 nm integer execution core , 2002, 2002 Symposium on VLSI Circuits. Digest of Technical Papers (Cat. No.02CH37302).

[12]  Edwin Hsing-Mean Sha,et al.  A novel multiplexer-based low-power full adder , 2004, IEEE Transactions on Circuits and Systems II: Express Briefs.

[13]  Niraj K. Jha,et al.  Testing of multiple-output domino logic (MODL) CMOS circuits , 1990 .

[14]  R. Allmon,et al.  High-performance microprocessor design , 1998, IEEE J. Solid State Circuits.

[15]  Neil Weste,et al.  Principles of CMOS VLSI Design , 1985 .