Structural Group Analysis of Functional Activation Maps

We present here a new method for cerebral activation detection over a group of subjects. This method is performed using individual activation maps of any sort. It aims at processing a group analysis while preserving individual information and at overcoming as far as possible limitations of the spatial normalization used to compare different subjects. We designed it such that it provides the individual occurrence of the activations detected at a group level. The localization can then be performed on the individual anatomy of each subject. The analysis starts with a hierarchical multiscale object-based description of each individual map. These descriptions are then compared, rather than comparing the images directly. The analysis is thus performed at an object level instead of voxel by voxel. It is made using a comparison graph, on which a labeling process is performed. The label field on the graph is modeled by a Markov random field, which allows us to introduce high-level rules of interrogation of the data. The process has been evaluated on simulated data and real data from a PET protocol.

[1]  Donald Geman,et al.  Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images , 1984 .

[2]  Chulhee Lee,et al.  Registration and statistical analysis of PET images using the wavelet transform , 1995 .

[3]  J B Poline,et al.  Enhanced Detection in Brain Activation Maps Using a Multifiltering Approach , 1994, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[4]  J. Besag Spatial Interaction and the Statistical Analysis of Lattice Systems , 1974 .

[5]  Karl J. Friston,et al.  Statistical parametric maps in functional imaging: A general linear approach , 1994 .

[6]  J. V. Haxby,et al.  Spatial Pattern Analysis of Functional Brain Images Using Partial Least Squares , 1996, NeuroImage.

[7]  Isabelle Bloch,et al.  A MRF Based Random Graph Modelling the Human Cortical Topography , 1995, CVRMed.

[8]  Jean-Baptiste Poline,et al.  Analysis of individual brain activation maps using hierarchical description and multiscale detection , 1994, IEEE Trans. Medical Imaging.

[9]  Nicholas Ayache,et al.  First international conference on computer vision, virtual reality and robotics in medicine, CVRMed'95 , 1994 .

[10]  T Lindeberg,et al.  Analysis of brain activation patterns using a 3‐D scale‐space primal sketch , 1999, Human brain mapping.

[11]  Stephen M. Pizer,et al.  Robust object representation through object-relevant use of scale , 1994, Medical Imaging.

[12]  Márta Fidrich,et al.  Following Feature Lines Across Scale , 1997, Scale-Space.

[13]  S. Pizer,et al.  An Image Description for Object Definition, Based on Extremal Regions in the Stack , 1986 .

[14]  Max A. Viergever,et al.  Scale and the differential structure of images , 1992, Image Vis. Comput..

[15]  Alan C. Evans,et al.  Searching scale space for activation in PET images , 1996, Human brain mapping.

[16]  H. Alkadhi,et al.  Localization of the motor hand area to a knob on the precentral gyrus. A new landmark. , 1997, Brain : a journal of neurology.

[17]  P. Roland,et al.  Estimation of the Probabilities of 3D Clusters in Functional Brain Images , 1998, NeuroImage.

[18]  R. Deriche Recursively Implementing the Gaussian and its Derivatives , 1993 .

[19]  Isabelle Bloch,et al.  Multiscale Measures in Linear Scale-Space for Characterizing Cerebral Functional Activations in 3D PET Difference Images , 1997, Scale-Space.

[20]  Karl J. Friston,et al.  A unified statistical approach for determining significant signals in images of cerebral activation , 1996, Human brain mapping.

[21]  Stephen M. Pizer,et al.  A Multiresolution Hierarchical Approach to Image Segmentation Based on Intensity Extrema , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[22]  Max A. Viergever,et al.  Probabilistic Multiscale Image Segmentation , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[23]  Jan-Olof Eklundh,et al.  Scale-space primal sketch: construction and experiments , 1992, Image Vis. Comput..

[24]  R. Deriche,et al.  Regularization and Scale Space , 1994 .

[25]  M. Hallett Human Brain Function , 1998, Trends in Neurosciences.

[26]  Karl J. Friston,et al.  Multisubject fMRI Studies and Conjunction Analyses , 1999, NeuroImage.

[27]  Karl J. Friston,et al.  Human Brain Function , 1997 .

[28]  P. Lions,et al.  Axioms and fundamental equations of image processing , 1993 .

[29]  Tony Lindeberg,et al.  Effective Scale: A Natural Unit for Measuring Scale-Space Lifetime , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[30]  Refractor Vision , 2000, The Lancet.

[31]  D Marr,et al.  Early processing of visual information. , 1976, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[32]  Jean-Francois Mangin,et al.  Robust Brain Segmentation Using Histogram Scale-Space Analysis and Mathematical Morphology , 1998, MICCAI.