On efficient simulations of multiscale kinetic transport

We discuss a new class of approaches for simulating multiscale kinetic problems, with particular emphasis on applications related to small-scale transport. These approaches are based on a decomposition of the kinetic description into an equilibrium part, which is described deterministically (analytically or numerically), and the remainder, which is described using a particle simulation method. We show that it is possible to derive evolution equations for the two parts from the governing kinetic equation, leading to a decomposition that is dynamically and automatically adaptive, and a multiscale method that seamlessly bridges the two descriptions without introducing any approximation. Our discussion pays particular attention to stochastic particle simulation methods that are typically used to simulate kinetic phenomena; in this context, these decomposition approaches can be thought of as control-variate variance-reduction formulations, with the nearby equilibrium serving as the control. Such formulations can provide substantial computational benefits in a broad spectrum of applications because a number of transport processes and phenomena of practical interest correspond to perturbations from nearby equilibrium distributions. In many cases, the computational cost reduction is sufficiently large to enable otherwise intractable simulations.

[1]  Francis J. Alexander,et al.  The direct simulation Monte Carlo method , 1997 .

[2]  P. Degond,et al.  The moment‐guided Monte Carlo method , 2009, 0908.0261.

[3]  Thomas M. M. Homolle,et al.  A low-variance deviational simulation Monte Carlo for the Boltzmann equation , 2007, J. Comput. Phys..

[4]  Richard E. Denton,et al.  {delta}f Algorithm , 1993 .

[5]  Wolfgang Wagner,et al.  Deviational particle Monte Carlo for the Boltzmann equation , 2008, Monte Carlo Methods Appl..

[6]  W. Lee,et al.  Partially linearized algorithms in gyrokinetic particle simulation , 1993 .

[7]  Alejandro L. Garcia,et al.  Statistical error in particle simulations of hydrodynamic phenomena , 2002, cond-mat/0207430.

[8]  T. G. Cowling,et al.  The mathematical theory of non-uniform gases : notes added in 1951 , 1951 .

[9]  Giacomo Dimarco,et al.  Domain Decomposition Techniques and Hybrid Multiscale Methods for Kinetic Equations , 2008 .

[10]  E. Wild On Boltzmann's equation in the kinetic theory of gases , 1951, Mathematical Proceedings of the Cambridge Philosophical Society.

[11]  Giacomo Dimarco,et al.  A Hybrid Method for Accelerated Simulation of Coulomb Collisions in a Plasma , 2007, Multiscale Model. Simul..

[12]  François Golse,et al.  A rarefied gas flow caused by a discontinuous wall temperature , 2001 .

[13]  Elaine S. Oran,et al.  Towards the development of a multiscale, multiphysics method for the simulation of rarefied gas flows , 2010, Journal of Fluid Mechanics.

[14]  Nicolas G. Hadjiconstantinou,et al.  The limits of Navier-Stokes theory and kinetic extensions for describing small-scale gaseous hydrodynamics , 2005 .

[15]  Luc Mieussens,et al.  A multiscale kinetic-fluid solver with dynamic localization of kinetic effects , 2009, J. Comput. Phys..

[16]  J. Hammersley,et al.  Monte Carlo Methods , 1965 .

[17]  Qing Hao,et al.  Frequency-dependent Monte Carlo simulations of phonon transport in two-dimensional porous silicon with aligned pores , 2009 .

[18]  C. Cercignani The Boltzmann equation and its applications , 1988 .

[19]  Yoshio Sone,et al.  Molecular Gas Dynamics: Theory, Techniques, and Applications , 2006 .

[20]  C. Cercignani Slow Rarefied Flows , 2006 .

[21]  Nicolas G. Hadjiconstantinou,et al.  Analysis of dis-cretization in the direct simulation Monte Carlo , 2000 .

[22]  P. Koumoutsakos,et al.  Hybrid atomistic-continuum method for the simulation of dense fluid flows , 2005 .

[23]  Moulay D. Tidriri,et al.  Coupling Boltzmann and Navier-Stokes Equations by Friction , 1996 .

[24]  Mark S. Lundstrom Fundamentals of Carrier Transport, 2nd edn , 2002 .

[25]  Gregg A Radtke,et al.  Variance-reduced particle simulation of the Boltzmann transport equation in the relaxation-time approximation. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[26]  T. Courau,et al.  Dominance Ratio Assessment and Monte Carlo Criticality Simulations: Dealing with High Dominance Ratio Systems , 2010 .

[27]  Giacomo Dimarco,et al.  Fluid Solver Independent Hybrid Methods for Multiscale Kinetic Equations , 2009, SIAM J. Sci. Comput..

[28]  A. Manela,et al.  Gas motion induced by unsteady boundary heating in a small-scale slab , 2008 .

[29]  Alejandro L. Garcia,et al.  Adaptive Mesh and Algorithm Refinement Using Direct Simulation Monte Carlo , 1999 .

[30]  Lowell L. Baker,et al.  On Variance-Reduced Simulations of the Boltzmann Transport Equation for Small-Scale Heat Transfer Applications , 2010 .

[31]  R. O. Pohl,et al.  Thermal resistance at interfaces , 1987 .

[32]  A. Manela,et al.  On the motion induced in a gas confined in a small-scale gap due to instantaneous boundary heating , 2007, Journal of Fluid Mechanics.

[33]  E Weinan,et al.  The heterogeneous multiscale method* , 2012, Acta Numerica.

[34]  Arun Majumdar,et al.  Transient ballistic and diffusive phonon heat transport in thin films , 1993 .

[35]  Richard E. Denton,et al.  δf Algorithm , 1995 .

[36]  D. Lacroix,et al.  Monte Carlo transient phonon transport in silicon and germanium at nanoscales , 2005, physics/0504072.

[37]  Alejandro L. Garcia,et al.  Three-dimensional Hybrid Continuum-Atomistic Simulations for Multiscale Hydrodynamics , 2004 .

[38]  Lowell L. Baker,et al.  Variance reduction for Monte Carlo solutions of the Boltzmann equation , 2005 .

[39]  Lowell L. Baker,et al.  Variance-Reduced Particle Methods for Solving the Boltzmann Equation , 2008 .

[40]  N. Hadjiconstantinou Regular Article: Hybrid Atomistic–Continuum Formulations and the Moving Contact-Line Problem , 1999 .

[41]  J. Anderson,et al.  Nonadrenergic noncholinergic neurotransmitter of feline trachealis: VIP or nitric oxide? , 1993, Journal of applied physiology.

[42]  Michail A. Gallis,et al.  Direct simulation Monte Carlo convergence behavior of the hard-sphere-gas thermal conductivity for Fourier heat flow , 2006 .

[43]  Walter A. Harrison,et al.  Solid state theory , 1970 .

[44]  M. Lundstrom Fundamentals of carrier transport , 1990 .

[45]  Andrew D. Ketsdever,et al.  Modeling of Thermal Transpiration Flows for Knudsen Compressor Optimization , 2005 .

[46]  W. Wagner A convergence proof for Bird's direct simulation Monte Carlo method for the Boltzmann equation , 1992 .

[47]  Lorenzo Pareschi,et al.  Adaptive and Recursive Time Relaxed Monte Carlo Methods for Rarefied Gas Dynamics , 2008, SIAM J. Sci. Comput..

[48]  Gang Chen Nanoscale energy transport and conversion : a parallel treatment of electrons, molecules, phonons, and photons , 2005 .

[49]  Giacomo Dimarco,et al.  Hybrid Multiscale Methods II. Kinetic Equations , 2008, Multiscale Model. Simul..

[50]  Ellad B. Tadmor,et al.  A unified framework and performance benchmark of fourteen multiscale atomistic/continuum coupling methods , 2009 .

[51]  C. W. Gear,et al.  Equation-Free, Coarse-Grained Multiscale Computation: Enabling Mocroscopic Simulators to Perform System-Level Analysis , 2003 .

[52]  E Weinan,et al.  The Heterognous Multiscale Methods , 2003 .

[53]  Thomas E. Schwartzentruber,et al.  A modular particle-continuum numerical method for hypersonic non-equilibrium gas flows , 2007, J. Comput. Phys..

[54]  A. Majumdar,et al.  Monte Carlo Study of Phonon Transport in Solid Thin Films Including Dispersion and Polarization , 2001 .

[55]  Lorenzo Pareschi,et al.  Towards a Hybrid Monte Carlo Method for Rarefied Gas Dynamics , 2004 .

[56]  N. G. Hadjiconstantinou Discussion of recent developments in hybrid atomistic-continuum methods for multiscale hydrodynamics , 2005 .

[57]  C. M. Diop,et al.  Biases and Statistical Errors in Monte Carlo Burnup Calculations: An Unbiased Stochastic Scheme to Solve Boltzmann/Bateman Coupled Equations , 2011 .

[58]  Lorenzo Pareschi,et al.  A hybrid method that interpolates between DSMC and CFD , 2006 .

[59]  Jean-Philippe M. Péraud Low variance methods for Monte Carlo simulation of phonon transport , 2011 .

[60]  S. Takata,et al.  Gas separation by means of the Knudsen compressor , 2007 .

[61]  Ioannis G. Kevrekidis,et al.  Acceleration Methods for Coarse-Grained Numerical Solution of the Boltzmann Equation , 2007 .

[62]  Gang Chen,et al.  Modeling the Thermal Conductivity and Phonon Transport in Nanoparticle Composites Using Monte Carlo Simulation , 2008 .

[63]  Nicolas Hadjiconstantinou,et al.  Efficient simulation of multidimensional phonon transport using energy-based variance-reduced Monte Carlo formulations , 2011, 1109.3910.

[64]  Francis J. Alexander,et al.  Cell size dependence of transport coefficients in stochastic particle algorithms , 1998 .

[65]  Iain D. Boyd,et al.  Predicting continuum breakdown in hypersonic viscous flows , 2003 .

[66]  W. Steckelmacher Molecular gas dynamics and the direct simulation of gas flows , 1996 .

[67]  H. C. Öttinger,et al.  Calculation of viscoelastic flow using molecular models: the connffessit approach , 1993 .

[68]  R. Peterson Direct simulation of phonon-mediated heat transfer in a Debye crystal , 1994 .

[69]  L. Pareschi,et al.  Asymptotic preserving Monte Carlo methods for the Boltzmann equation , 2000 .

[70]  Nicolas G. Hadjiconstantinou,et al.  Low-noise Monte Carlo simulation of the variable hard sphere gas , 2011 .

[71]  F. G. Cheremisin Solving the Boltzmann equation in the case of passing to the hydrodynamic flow regime , 2000 .

[72]  T. Teichmann,et al.  Introduction to physical gas dynamics , 1965 .