Synthesis and characterization of gahnite-based microwave dielectric ceramics (MDC) for microstrip antennas prepared by a sol–gel method

Gahnite (zinc aluminate) nanoparticle powder is synthesized by a sol–gel method and used to fabricate a microstrip antenna. X-ray diffraction analysis indicates the formation of a face-centered cubic gahnite structure with an average crystallite size of 19.92 nm. The surface morphology of the gahnite is analyzed with field-emission scanning electron microscopy. The presence of water molecules and nitrates within the material is confirmed by Fourier transform infrared analysis. The measured dielectric constant, bandgap and unloaded quality factor of the synthesized powder are 8.70, 4.08 eV and 4592, respectively. The performance of the microstrip antenna is evaluated using return loss, (S11) parameter analysis. The measured impedance bandwidth is 760 MHz in the low-frequency band and 8.1 GHz in the high-frequency band. The overall performance demonstrates that the fabricated ceramic is suitable for application in a microstrip antenna.Graphical Abstract

[1]  X. M. Wu,et al.  Effects of annealing temperature on the structure and photoluminescence properties of ZnO films , 2007 .

[2]  H. Abdullah,et al.  Effect of Zn Site for Ca Substitution on Optical and Microwave Dielectric Properties of ZnAl2O4 Thin Films by Sol Gel Method , 2014 .

[3]  L. Hench,et al.  Formation of interconnected microstructural ZnAl2O4 films prepared by sol–gel method , 2005 .

[4]  S. Afshar,et al.  Improving ZnAl2O4 structure by using chelating agents , 2012 .

[5]  S. Suib,et al.  Sol-gel synthesis of ternary metal oxides. 1. Synthesis and characterization of MAl2O4 (M = Mg, Ni, Co, Cu, Fe, Zn, Mn, Cd, Ca, Hg, Sr, and Ba) and lead aluminum oxide (Pb2Al2O5) , 1993 .

[6]  M. Zawadzki Synthesis of Nanosized and Microporous Zinc Aluminate Spinel by Microwave Assisted Hydrothermal Method (Microwave‐Hydrothermal Synthesis of ZnAl2O4). , 2006 .

[7]  Youssef A. Mobarak,et al.  Materials Selection, Synthesis, and Dielectrical Properties of PVC Nanocomposites , 2013 .

[8]  D. Kumar,et al.  On structural, optical and dielectric properties of zinc aluminate nanoparticles , 2011 .

[9]  P. Mohanan,et al.  Temperature stable low loss ceramic dielectrics in (1-x)ZnAl$\mathsf{_{2}}$O$\mathsf{_{4}}$-xTiO$\mathsf{_{2}}$ system for microwave substrate applications , 2004 .

[10]  P. Mohanan,et al.  Temperature stable low loss ceramic dielectrics in ( 1x ) ZnAI 2 O 4-xTiO 2 system for microwave substrate applications , 2009 .

[11]  Constantine A. Balanis,et al.  Antenna Theory: Analysis and Design , 1982 .

[12]  M. Salavati‐Niasari,et al.  Synthesis and characterization of spinel-type zinc aluminate nanoparticles by a modified sol–gel method using new precursor , 2011 .

[13]  J. Vijaya,et al.  Synthesis, characterization and performance of porous Sr(II)-added ZnAl2O4 nanomaterials for optical and catalytic applications , 2012 .

[14]  H. Ohsato,et al.  Effects of TiO2 on sinterability and dielectric properties of high-Q forsterite ceramics , 2003 .

[15]  D. Yuan,et al.  Synthesis and characterization of ZnAl2O4/SiO2 nanocomposites by sol–gel method , 2003 .

[16]  S. Nahm,et al.  Synthesis and Microwave Dielectric Properties of Re3Ga5O12 (Re: Nd, Sm, Eu, Dy, Yb, and Y) Ceramics , 2007 .

[17]  G. T. Palomino,et al.  Preparation and characterization of spinel-type high surface area Al2O3-ZnAl2O4 mixed metal oxides by an alkoxide route , 1997 .

[18]  Xingzhong Zhao,et al.  Effects of Bi2O3 addition on the microstructures and microwave dielectric characteristics of Ba6 - 3x(Sm0.2Nd0.8)8+2xTi18O54(x=2/3) ceramics , 2006 .

[19]  T. Vaimakis,et al.  Variation of surface properties and textural features of spinel ZnAl2O4 and perovskite LaMnO3 nanoparticles prepared via CTAB-butanol-octane-nitrate salt microemulsions in the reverse and bicontinuous states. , 2003, Journal of colloid and interface science.

[20]  X. Cheng,et al.  Synthesis and optical properties of Co2+-doped ZnGa2O4 nanocrystals , 2006 .

[21]  S. Santucci,et al.  Synthesis and characterization of zinc aluminum oxide thin films by sol–gel technique , 2001 .

[22]  K. Sankaranarayanan,et al.  A novel in situ synthesis and growth of ZnAl2O4 thin films , 2006 .

[23]  D. Choi,et al.  Effect of Oxygen on the Optical and the Electrical Properties of Amorphous InGaZnO Thin Films Prepared by RF Magnetron Sputtering , 2008 .

[24]  C. G. Koops On the Dispersion of Resistivity and Dielectric Constant of Some Semiconductors at Audiofrequencies , 1951 .

[25]  C. Korzeniewski,et al.  Facile synthesis of zinc aluminate nanostructures through an epoxide driven sol–gel route , 2012 .

[26]  H. Abdullah,et al.  Study of (1−x)ZnAl2O4–xSiO2 spinel structures as microwave dielectric materials , 2014, Journal of Sol-Gel Science and Technology.

[27]  N. Guilhaume,et al.  Catalytic combustion of methane : copper oxide supported on high-specific-area spinels synthesized by a sol–gel process , 1994 .

[28]  Karl Willy Wagner,et al.  Zur Theorie der unvollkommenen Dielektrika , 1913 .

[29]  C. Fonseca,et al.  Improving the electrochemical properties of porous LiCoO2 films obtained by template synthesis , 2005 .

[30]  J. Gale,et al.  Atomistic Simulation Study of Spinel Oxides: Zinc Aluminate and Zinc Gallate , 2004 .

[31]  V. Ciupină,et al.  Characterization of ZnAl2O4 nanocrystals prepared by coprecipitation and microemulsion techniques , 2004 .

[32]  Chengxiong Huang,et al.  Improved high-Q microwave dielectric resonator using ZnO and WO3-doped Zr0.8Sn0.2TiO4 ceramics , 2001 .