Embedding iterated line digraphs in books

In this paper, we present an upper bound on the pagenumber of an iterated line digraph Lk(G) of a digraph G. Our bound depends only on the digraph G and is independent of the number of iterations k. In particular, it is proved that the pagenumber of Lk(G) does not increase with the number of iterations k. This result generalizes previous results on book-embeddings of some particular families of iterated line digraphs such as de Bruijn digraphs, Kautz digraphs, and butterfly networks. Also, we apply our result to wrapped butterfly networks. © 2002 Wiley Periodicals, Inc.

[1]  Seth M. Malitz,et al.  Genus g Graphs Have Pagenumber O(sqrt(g)) , 1994, J. Algorithms.

[2]  David R. Wood,et al.  Bounded Degree Book Embeddings and Three-Dimensional Orthogonal Graph Drawing , 2001, GD.

[3]  F. Leighton,et al.  Introduction to Parallel Algorithms and Architectures: Arrays, Trees, Hypercubes , 1991 .

[4]  都倉 信樹,et al.  On the pagenumber of hypercubes and cube-connected cycles , 1988 .

[5]  Yukio Shibata,et al.  Containment of Butterflies in Networks Constructed by the Line Digraph Operation , 1997, Inf. Process. Lett..

[6]  Ramjee P. Swaminathan,et al.  The Pagenumber of the Class of Bandwidth-k Graphs is k-1 , 1995, Inf. Process. Lett..

[7]  Arnold L. Rosenberg,et al.  Embedding graphs in books: a layout problem with applications to VLSI design , 1985 .

[8]  Mihalis Yannakais,et al.  Embedding planar graphs in four pages , 1989, STOC 1989.

[9]  Yukio Shibata,et al.  Embedding De Bruijn, Kautz and Shuffle-exchange Networks in Books , 1997, Discret. Appl. Math..

[10]  Paul C. Kainen,et al.  The book thickness of a graph , 1979, J. Comb. Theory, Ser. B.

[11]  Stéphane Pérennes,et al.  Hamilton Circuits in the Directed Wrapped Butterfly Network , 1998, Discret. Appl. Math..

[12]  Mihalis Yannakakis,et al.  Embedding Planar Graphs in Four Pages , 1989, J. Comput. Syst. Sci..

[13]  Arnold L. Rosenberg,et al.  The Diogenes Approach to Testable Fault-Tolerant Arrays of Processors , 1983, IEEE Transactions on Computers.

[14]  Miguel Angel Fiol,et al.  Maximally connected digraphs , 1989, J. Graph Theory.

[15]  Lenwood S. Heath,et al.  The pagenumber of k-trees is O(k) , 2001, Discret. Appl. Math..

[16]  Miguel Angel Fiol,et al.  Line Digraph Iterations and the (d, k) Digraph Problem , 1984, IEEE Transactions on Computers.

[17]  Douglas B. West,et al.  Pagenumber of complete bipartite graphs , 1988, J. Graph Theory.