Verification of the time evolution of cosmological simulations via hypothesis-driven comparative and quantitative visualization

We describe a visualization-assisted process for the verification of cosmological simulation codes. The need for code verification stems from the requirement for very accurate predictions in order to interpret observational data confidently. We compare different simulation algorithms in order to reliably predict differences in simulation results and understand their dependence on input parameter settings. Our verification process consists of the integration of iterative hypothesis-verification with comparative, feature and quantitative visualization. We validate this process by verifying the time evolution results of three different cosmology simulation codes. The purpose of this verification is to study the accuracy of AMR methods versus other N-body simulation methods for cosmological simulations.

[1]  Paul A. Navrátil,et al.  Visualization of Cosmological Particle-Based Datasets , 2007, IEEE Transactions on Visualization and Computer Graphics.

[2]  T. J. Jankun-Kelly,et al.  Visualization Exploration and Encapsulation via a Spreadsheet-Like Interface , 2001, IEEE Trans. Vis. Comput. Graph..

[3]  Jian Huang,et al.  Scalable Data Servers for Large Multivariate Volume Visualization , 2006, IEEE Transactions on Visualization and Computer Graphics.

[4]  Bernd Hamann,et al.  Multi-dimensional transfer functions for interactive 3D flow visualization , 2004, 12th Pacific Conference on Computer Graphics and Applications, 2004. PG 2004. Proceedings..

[5]  Carson Brownlee,et al.  Quantitatively driven visualization and analysis on emerging architectures , 2008 .

[6]  Katrin Heitmann,et al.  Capturing halos at high redshifts , 2006 .

[7]  G. Efstathiou,et al.  The evolution of large-scale structure in a universe dominated by cold dark matter , 1985 .

[8]  Min Chen,et al.  Data, Information, and Knowledge in Visualization , 2009, IEEE Computer Graphics and Applications.

[9]  Zhifan Zhu,et al.  Extracting and Visualizing Ocean Eddies in Time--Varying Flow Fields , 2000 .

[10]  Deborah Silver,et al.  Feature Visualization , 1994, Scientific Visualization.

[11]  Xin Wang,et al.  Tracking and Visualizing Turbulent 3D Features , 1997, IEEE Trans. Vis. Comput. Graph..

[12]  Marc Levoy,et al.  Spreadsheets for images , 1994, SIGGRAPH.

[13]  Deborah Silver,et al.  Visualizing features and tracking their evolution , 1994, Computer.

[14]  Kwan-Liu Ma,et al.  Multiple Uncertainties in Time-Variant Cosmological Particle Data , 2008, 2008 IEEE Pacific Visualization Symposium.

[15]  V. Springel The Cosmological simulation code GADGET-2 , 2005, astro-ph/0505010.

[16]  Viktor K. Decyk,et al.  An Object-Oriented Parallel Particle-in-Cell Code for Beam Dynamics Simulation in Linear Accelerators , 2000, International Conference on Software Composition.

[17]  Helwig Hauser,et al.  Hypothesis Generation in Climate Research with Interactive Visual Data Exploration , 2008, IEEE Transactions on Visualization and Computer Graphics.

[18]  Pat Hanrahan,et al.  Show Me: Automatic Presentation for Visual Analysis , 2007, IEEE Transactions on Visualization and Computer Graphics.

[19]  Kenneth I. Joy,et al.  Query-Driven Visualization of Time-Varying Adaptive Mesh Refinement Data , 2008, IEEE Transactions on Visualization and Computer Graphics.

[20]  Hans Hagen,et al.  High performance multivariate visual data exploration for extremely large data , 2008, 2008 SC - International Conference for High Performance Computing, Networking, Storage and Analysis.

[21]  Richard L. Peskin,et al.  Interactive Quantitative Visualization , 1991, IBM J. Res. Dev..

[22]  G. Bryan,et al.  Introducing Enzo, an AMR Cosmology Application , 2004, astro-ph/0403044.

[23]  David S. Ebert,et al.  Illustration and photography inspired visualization of flows and volumes , 2005, VIS 05. IEEE Visualization, 2005..