Analysis of low-pass filters for approximate deconvolution closure modelling in one-dimensional decaying Burgers turbulence

The idea of spatial filtering is central in approximate deconvolution large-eddy simulation (AD-LES) of turbulent flows. The need for low-pass filters naturally arises in the approximate deconvolution approach which is based solely on mathematical approximations by employing repeated filtering operators. Two families of low-pass spatial filters are studied in this paper: the Butterworth filters and the Padé filters. With a selection of various filtering parameters, variants of the AD-LES are systematically applied to the decaying Burgers turbulence problem, which is a standard prototype for more complex turbulent flows. Comparing with the direct numerical simulations, it is shown that all forms of the AD-LES approaches predict significantly better results than the under-resolved simulations at the same grid resolution. However, the results highly depend on the selection of the filtering procedure and the filter design. It is concluded that a complete attenuation for the smallest scales is crucial to prevent energy accumulation at the grid cut-off.

[1]  Tellervo T. Brandt A priori tests on numerical errors in large eddy simulation using finite differences and explicit filtering , 2006 .

[2]  P. Sagaut,et al.  Large-eddy simulation of aero-optical effects in a spatially developing turbulent boundary layer , 2006 .

[3]  Jitendra Malik,et al.  Scale-Space and Edge Detection Using Anisotropic Diffusion , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[4]  Danesh K. Tafti,et al.  Study of discrete test filters and finite difference approximations for the dynamic subgrid‐scale stress model , 1996 .

[5]  Giuliano De Stefano,et al.  Sharp cutoff versus smooth filtering in large eddy simulation , 2002 .

[6]  R. D. Richtmyer,et al.  Difference methods for initial-value problems , 1959 .

[7]  D. Lilly,et al.  A proposed modification of the Germano subgrid‐scale closure method , 1992 .

[8]  F. Chow,et al.  Evaluation of Turbulence Closure Models for Large-Eddy Simulation over Complex Terrain: Flow over Askervein Hill , 2009 .

[9]  M. Germano Differential filters of elliptic type , 1986 .

[10]  Pierre Sagaut,et al.  Discrete filters for large eddy simulation , 1999 .

[11]  Monika Neda,et al.  A similarity theory of approximate deconvolution models of turbulence , 2007 .

[12]  S. Drobniak,et al.  Coherent structures of free acoustically stimulated jet , 2002 .

[13]  Alan V. Oppenheim,et al.  Discrete-Time Signal Pro-cessing , 1989 .

[14]  Luc Mongeau,et al.  A high resolution differential filter for large eddy simulation: Toward explicit filtering on unstructured grids , 2015, J. Comput. Phys..

[15]  P. Moin,et al.  A General Class of Commutative Filters for LES in Complex Geometries , 1998 .

[16]  Akira Yoshizawa,et al.  Subgrid-scale modeling with a variable length scale , 1989 .

[17]  O. San,et al.  Approximate deconvolution large eddy simulation of a stratified two-layer quasigeostrophic ocean model , 2012, 1212.0140.

[18]  Miguel R. Visbal,et al.  On the use of higher-order finite-difference schemes on curvilinear and deforming meshes , 2002 .

[19]  U. Schumann Subgrid Scale Model for Finite Difference Simulations of Turbulent Flows in Plane Channels and Annuli , 1975 .

[20]  William H. Press,et al.  Book-Review - Numerical Recipes in Pascal - the Art of Scientific Computing , 1989 .

[21]  E. Aurell,et al.  On the decay of Burgers turbulence , 1997, Journal of Fluid Mechanics.

[22]  S. Kida Asymptotic properties of Burgers turbulence , 1979, Journal of Fluid Mechanics.

[23]  P. Moin,et al.  A dynamic localization model for large-eddy simulation of turbulent flows , 1995, Journal of Fluid Mechanics.

[24]  Caskey,et al.  GENERAL CIRCULATION EXPERIMENTS WITH THE PRIMITIVE EQUATIONS I . THE BASIC EXPERIMENT , 1962 .

[25]  L. Berselli,et al.  Mathematics of Large Eddy Simulation of Turbulent Flows , 2005 .

[26]  M. Germano Differential filters for the large eddy numerical simulation of turbulent flows , 1986 .

[27]  Antony Jameson,et al.  The Construction of Discretely Conservative Finite Volume Schemes that Also Globally Conserve Energy or Entropy , 2008, J. Sci. Comput..

[28]  P. Sagaut BOOK REVIEW: Large Eddy Simulation for Incompressible Flows. An Introduction , 2001 .

[29]  G. Wei,et al.  Shock capturing by anisotropic diffusion oscillation reduction , 2000 .

[30]  E. Hopf The partial differential equation ut + uux = μxx , 1950 .

[31]  Darryl D. Holm,et al.  Leray and LANS-α modelling of turbulent mixing , 2005, nlin/0504038.

[32]  Leo G. Rebholz,et al.  Conservation laws of turbulence models , 2007 .

[33]  Nikolaus A. Adams,et al.  A Subgrid-Scale Deconvolution Approach for Shock Capturing , 2002 .

[34]  Konstantin Khanin,et al.  Burgers Turbulence , 2007, Energy Transfers in Fluid Flows.

[35]  William Layton,et al.  Residual stress of approximate deconvolution models of turbulence , 2006 .

[36]  On the existence of global attractors of the approximate deconvolution models of turbulence , 2012 .

[37]  Traian Iliescu,et al.  Bridging the Boussinesq and primitive equations through spatio-temporal filtering , 2010, Appl. Math. Lett..

[38]  P. Moin,et al.  A dynamic subgrid‐scale eddy viscosity model , 1990 .

[39]  F. Massaioli,et al.  Scaling And Intermittency In Burgers' Turbulence , 1995 .

[40]  I. Stanculescu Existence theory of abstract approximate deconvolution models of turbulence , 2008 .

[41]  Traian Iliescu,et al.  Approximate deconvolution large eddy simulation of a barotropic ocean circulation model , 2011, 1104.2730.

[42]  Chi-Wang Shu,et al.  Total variation diminishing Runge-Kutta schemes , 1998, Math. Comput..

[43]  Nikolaus A. Adams,et al.  Direct modelling of subgrid scales of turbulence in large eddy simulations , 2002 .

[44]  M. D. Love Subgrid modelling studies with Burgers’ equation , 1980, Journal of Fluid Mechanics.

[45]  T. Hughes,et al.  Large Eddy Simulation and the variational multiscale method , 2000 .

[46]  Emmanuel Leriche,et al.  A coupled approximate deconvolution and dynamic mixed scale model for large-eddy simulation , 2007, J. Comput. Phys..

[47]  Julia S. Mullen,et al.  Filtering techniques for complex geometry fluid flows , 1999 .

[48]  Thomas J. R. Hughes,et al.  The multiscale formulation of large eddy simulation: Decay of homogeneous isotropic turbulence , 2001 .

[49]  R. Kraichnan,et al.  Statistics of decaying Burgers turbulence , 1993 .

[50]  L. Berselli,et al.  Convergence of approximate deconvolution models to the mean Navier-Stokes Equations , 2012 .

[51]  P. Valageas Statistical Properties of the Burgers Equation with Brownian Initial Velocity , 2008, 0810.4332.

[52]  M. Germano The similarity subgrid stresses associated to the approximate Van Cittert deconvolutions , 2015 .

[53]  A. Yakhot,et al.  Renormalization group formulation of large-eddy simulations , 1989 .

[54]  I. Kolokolov,et al.  Intermittency of Burgers' Turbulence , 1996, chao-dyn/9609005.

[55]  N. Adams,et al.  The approximate deconvolution model for large-eddy simulations of compressible flows and its application to shock-turbulent-boundary-layer interaction , 2001 .

[56]  C. Meneveau,et al.  Scale-Invariance and Turbulence Models for Large-Eddy Simulation , 2000 .

[57]  Hervé Jeanmart,et al.  Explicit-filtering large-eddy simulation using the tensor-diffusivity model supplemented by a dynami , 2001 .

[58]  R. Lewandowski,et al.  Error estimates in approximate deconvolution models , 2011 .

[59]  S. Lele Compact finite difference schemes with spectral-like resolution , 1992 .

[60]  J. Cole On a quasi-linear parabolic equation occurring in aerodynamics , 1951 .

[61]  Gregory A. Blaisdell,et al.  The effect of the formulation of nonlinear terms on aliasing errors in spectral methods , 1996 .

[62]  M. Germano A new deconvolution method for large eddy simulation , 2009 .

[63]  Prakash Vedula,et al.  A framework for large eddy simulation of Burgers turbulence based upon spatial and temporal statistical information , 2015 .

[64]  Fabien Crouzet,et al.  Filter shape dependence and effective scale separation in large-eddy simulations based on relaxation filtering , 2011 .

[65]  O. San,et al.  High-order methods for decaying two-dimensional homogeneous isotropic turbulence , 2012, 1212.0920.

[66]  Bowen Zhou,et al.  Large-Eddy Simulation of the Stable Boundary Layer with Explicit Filtering and Reconstruction Turbulence Modeling , 2011 .

[67]  Elias Balaras,et al.  Scale-Similar Models for Large-Eddy Simulations , 1999 .

[68]  Victor Lee,et al.  New Trends in Large-Eddy Simulations of Turbulence , 2011 .

[69]  C. D. Pruett,et al.  A Priori Analyses of Three Subgrid-Scale Models for One-Parameter Families of Filters , 2000 .

[70]  W. Layton,et al.  Approximate Deconvolution Models of Turbulence: Analysis, Phenomenology and Numerical Analysis , 2012 .

[71]  Bernd Jähne,et al.  Digital Image Processing: Concepts, Algorithms, and Scientific Applications , 1991 .

[72]  O. San A dynamic eddy-viscosity closure model for large eddy simulations of two-dimensional decaying turbulence , 2014 .

[73]  N. Adams,et al.  An approximate deconvolution procedure for large-eddy simulation , 1999 .

[74]  J. Smagorinsky,et al.  GENERAL CIRCULATION EXPERIMENTS WITH THE PRIMITIVE EQUATIONS , 1963 .

[75]  Traian Iliescu,et al.  A posteriori analysis of low-pass spatial filters for approximate deconvolution large eddy simulations of homogeneous incompressible flows , 2014, 1401.6217.

[76]  P. Moin,et al.  Subgrid-scale backscatter in turbulent and transitional flows , 1991 .

[77]  A. Dunca,et al.  On the Stolz-Adams Deconvolution Model for the Large-Eddy Simulation of Turbulent Flows , 2006, SIAM J. Math. Anal..

[78]  Modeling error in Approximate Deconvolution Models , 2011, 1111.6362.

[79]  S. A. Ragab,et al.  A Large-Eddy Simulation of the Shear-Driven Cavity Flow Using Dynamic Modeling , 1996 .

[80]  N. Adams,et al.  An approximate deconvolution model for large-eddy simulation with application to incompressible wall-bounded flows , 2001 .

[81]  J. Ferziger,et al.  Explicit Filtering and Reconstruction Turbulence Modeling for Large-Eddy Simulation of Neutral Boundary Layer Flow , 2005 .

[82]  W. Press,et al.  Numerical Recipes in Fortran: The Art of Scientific Computing.@@@Numerical Recipes in C: The Art of Scientific Computing. , 1994 .