Coupling single-molecule magnets to quantum circuits

In this work we study theoretically the coupling of single-molecule magnets (SMMs) to a variety of quantum circuits, including microwave resonators with and without constrictions and flux qubits. The main result of this study is that it is possible to achieve strong and ultrastrong coupling regimes between SMM crystals and the superconducting circuit, with strong hints that such a coupling could also be reached for individual molecules close to constrictions. Building on the resulting coupling strengths and the typical coherence times of these molecules ( µs), we conclude that SMMs can be used for coherent storage and manipulation of quantum information, either in the context of quantum computing or in quantum simulations. Throughout the work we also discuss in detail the family of molecules that are most suitable for such operations, based not only on the coupling strength, but also on the typical energy

[1]  R J Schoelkopf,et al.  Quantum computing with an electron spin ensemble. , 2009, Physical review letters.

[2]  E Solano,et al.  Observation of the Bloch-Siegert shift in a qubit-oscillator system in the ultrastrong coupling regime. , 2010, Physical review letters.

[3]  R. Sessoli,et al.  Single-Molecule Magnets , 2000 .

[4]  Jeremy Levy,et al.  Quantum computing with spin cluster qubits. , 2003, Physical review letters.

[5]  C. Sangregorio,et al.  QUANTUM TUNNELING OF THE MAGNETIZATION IN AN IRON CLUSTER NANOMAGNET , 1997 .

[6]  Friedman,et al.  Macroscopic measurement of resonant magnetization tunneling in high-spin molecules. , 1996, Physical review letters.

[7]  F Troiani,et al.  Molecular nanomagnets as quantum simulators. , 2011, Physical review letters.

[8]  D. Koelle,et al.  Broadband electron spin resonance from 500 MHz to 40 GHz using superconducting coplanar waveguides , 2012, 1209.5061.

[9]  A. Caneschi,et al.  Magnetic bistability in a metal-ion cluster , 1993, Nature.

[10]  L Frunzio,et al.  High-cooperativity coupling of electron-spin ensembles to superconducting cavities. , 2010, Physical review letters.

[11]  E. Coronado,et al.  Mononuclear lanthanide single molecule magnets based on the polyoxometalates [Ln(W5O18)2]9- and [Ln(beta2-SiW11O39)2]13- (Ln(III) = Tb, Dy, Ho, Er, Tm, and Yb). , 2009, Inorganic chemistry.

[12]  J Wrachtrup,et al.  Strong coupling of a spin ensemble to a superconducting resonator. , 2010, Physical review letters.

[13]  L. Thomas,et al.  Macroscopic quantum tunnelling of magnetization in a single crystal of nanomagnets , 1996, Nature.

[14]  J. Schmiedmayer,et al.  Strong magnetic coupling of an ultracold gas to a superconducting waveguide cavity. , 2008, Physical review letters.

[15]  Alternating current magnetic susceptibility of a molecular magnet submonolayer directly patterned onto a micro superconducting quantum interference device , 2011 .

[16]  R. Simons Coplanar waveguide circuits, components, and systems , 2001 .

[17]  E. Solano,et al.  Circuit quantum electrodynamics in the ultrastrong-coupling regime , 2010 .

[18]  S. Blundell,et al.  Will spin-relaxation times in molecular magnets permit quantum information processing? , 2006, Physical review letters.

[19]  E. del Barco,et al.  Magnetic Qubits as Hardware for Quantum Computers , 2001 .

[20]  Y. Sato,et al.  Superfluid helium quantum interference devices: physics and applications , 2012, Reports on progress in physics. Physical Society.

[21]  D. Drung,et al.  Circuit edit of superconducting microcircuits , 2009 .

[22]  S. Girvin,et al.  Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics , 2004, Nature.

[23]  W. Wernsdorfer,et al.  Entanglement in supramolecular spin systems of two weakly coupled antiferromagnetic rings (purple-Cr7Ni). , 2010, Physical review letters.

[24]  Marco Affronte,et al.  Molecular nanomagnets for information technologies , 2009 .

[25]  Edwige Otero,et al.  Quantum tunnelling of the magnetization in a monolayer of oriented single-molecule magnets , 2010, Nature.

[26]  P. Hānggi,et al.  Nonequilibrium phases in hybrid arrays with flux qubits and nitrogen-vacancy centers , 2012, 1203.1857.

[27]  Kae Nemoto,et al.  Coherent coupling of a superconducting flux qubit to an electron spin ensemble in diamond , 2011, Nature.

[28]  E. Coronado,et al.  Mononuclear lanthanide single-molecule magnets based on polyoxometalates. , 2008, Journal of the American Chemical Society.

[29]  W. Wernsdorfer,et al.  Quantum tunneling of magnetization in lanthanide single-molecule magnets: bis(phthalocyaninato)terbium and bis(phthalocyaninato)dysprosium anions. , 2005, Angewandte Chemie.

[30]  J. Schmiedmayer,et al.  Cavity QED with magnetically coupled collective spin states. , 2011, Physical review letters.

[31]  R. Sessoli,et al.  Quantum tunneling of magnetization and related phenomena in molecular materials. , 2003, Angewandte Chemie.

[32]  C J Wedge,et al.  Chemical engineering of molecular qubits. , 2012, Physical review letters.

[33]  J. Sesé,et al.  Gd-based single-ion magnets with tunable magnetic anisotropy: molecular design of spin qubits. , 2012, Physical review letters.

[34]  Fernando Luis,et al.  Design of magnetic coordination complexes for quantum computing. , 2012, Chemical Society reviews.

[35]  R. Barends,et al.  Niobium and Tantalum High Q Resonators for Photon Detectors , 2007, IEEE Transactions on Applied Superconductivity.

[36]  F Troiani,et al.  Molecular engineering of antiferromagnetic rings for quantum computation. , 2004, Physical review letters.

[37]  S. Miyashita,et al.  Magnetic strong coupling in a spin-photon system and transition to classical regime , 2010, 1004.3605.

[38]  F Luis,et al.  Molecular prototypes for spin-based CNOT and SWAP quantum gates. , 2011, Physical review letters.

[39]  M Ruben,et al.  Supramolecular spin valves. , 2011, Nature Materials.

[40]  S. Girvin,et al.  Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation , 2004, cond-mat/0402216.

[41]  Pairwise decoherence in coupled spin qubit networks. , 2006, Physical review letters.

[42]  S. Blundell,et al.  Storing quantum information in chemically engineered nanoscale magnets , 2009 .

[43]  F. Nori,et al.  Hybrid quantum circuit consisting of a superconducting flux qubit coupled to a spin ensemble and a transmission-line resonator , 2012, 1211.1827.

[44]  J. Sesé,et al.  Lanthanoid single-ion magnets based on polyoxometalates with a 5-fold symmetry: the series [LnP5W30O110]12- (Ln3+ = Tb, Dy, Ho, Er, Tm, and Yb). , 2012, Journal of the American Chemical Society.

[45]  Marco Affronte,et al.  Engineering the coupling between molecular spin qubits by coordination chemistry. , 2009, Nature nanotechnology.

[46]  K. Stevens Matrix Elements and Operator Equivalents Connected with the Magnetic Properties of Rare Earth Ions , 1952 .

[47]  D. Pozar Microwave Engineering , 1990 .

[48]  A. Wallraff,et al.  Fabrication and characterization of superconducting circuit QED devices for quantum computation , 2005, IEEE Transactions on Applied Superconductivity.

[49]  J. Tejada,et al.  Field tuning of thermally activated magnetic quantum tunnelling in Mn12 − Ac molecules , 1996 .

[50]  D. Awschalom,et al.  Quantum Spintronics: Engineering and Manipulating Atom-Like Spins in Semiconductors , 2013, Science.

[51]  Rare-earth solid-state qubits. , 2007, Nature nanotechnology.

[52]  Francesco Grilli,et al.  Potential and limits of numerical modelling for supporting the development of HTS devices , 2014, 1412.2312.

[53]  M. Markham,et al.  Ultralong spin coherence time in isotopically engineered diamond. , 2009, Nature materials.

[54]  T. Mitra,et al.  Quantum oscillations in a molecular magnet , 2008, Nature.

[55]  A. Imamoğlu Cavity QED based on collective magnetic dipole coupling: spin ensembles as hybrid two-level systems. , 2008, Physical review letters.

[56]  P. Stamp,et al.  Decoherence in crystals of quantum molecular magnets , 2011, Nature.

[57]  W. Wernsdorfer,et al.  Quantum phase interference and parity effects in magnetic molecular clusters , 1999, Science.

[58]  J. Morton,et al.  Electron spin ensemble strongly coupled to a three-dimensional microwave cavity , 2011, 1106.0507.

[59]  S. Filipp,et al.  Coplanar waveguide resonators for circuit quantum electrodynamics , 2008, 0807.4094.

[60]  Xiaobo Zhu,et al.  Coherent Operation of a Gap-tunable Flux Qubit , 2010, 1008.4016.

[61]  Michael N. Leuenberger,et al.  Quantum computing in molecular magnets , 2000, Nature.

[62]  Seth Lloyd,et al.  Superconducting persistent-current qubit , 1999, cond-mat/9908283.

[63]  M. Dressel,et al.  Direct observation of quantum coherence in single-molecule magnets. , 2008, Physical review letters.

[64]  A S Sørensen,et al.  Coupling nitrogen-vacancy centers in diamond to superconducting flux qubits. , 2010, Physical review letters.

[65]  P. Stamp,et al.  Spin-based quantum computers made by chemistry: hows and whys , 2008, 0807.1986.