On support measures in Minkowski spaces and contact distributions in stochastic geometry

This paper is concerned with contact distribution functions of a random closed set Ξ = ∪∞ n=1 Ξ n in R d , where the Ξ n are assumed to be random nonempty convex bodies. These distribution functions are defined here in terms of a distance function which is associated with a strictly convex gauge body (structuring element) that contains the origin in its interior. Support measures with respect to such distances will be introduced and extended to sets in the local convex ring. These measures will then be used in a systematic way to derive and describe some of the basic properties of contact distribution functions. Most of the results are obtained in a general nonstationary setting. Only the final section deals with the stationary case.

[1]  Lothar Heinrich,et al.  On existence and mixing properties of germ-grain models , 1992 .

[2]  D. Stoyan,et al.  Stochastic Geometry and Its Applications , 1989 .

[3]  Adrian Baddeley,et al.  Stereology of tubular structures , 1983 .

[4]  J. Mecke,et al.  Stationäre zufällige Maße auf lokalkompakten Abelschen Gruppen , 1967 .

[5]  W. Weil Zufällige Berührung konvexer Körper durch q-dimensionale Ebenen , 1981 .

[6]  E. CastroPeter,et al.  Infinitely Divisible Point Processes , 1982 .

[7]  O. Barndorff-Nielsen,et al.  Stochastic Geometry , 1999 .

[8]  R. Schassberger,et al.  On the distribution of the spherical contact vector of stationary germ-grain models , 1998, Advances in Applied Probability.

[9]  D. Stoyan,et al.  Estimators of distance distributions for spatial patterns , 1998 .

[10]  M. Voit CENTRAL LIMIT THEOREMS FOR A CLASS OF , 1990 .

[11]  A. Baddeley Spatial sampling and censoring , 2019, Stochastic Geometry.

[12]  R. Schneider Bestimmung konvexer Körper durch Krümmungsmaße , 1979 .

[13]  Wolfgang Weil,et al.  Densities for stationary random sets and point processes , 1984, Advances in Applied Probability.

[14]  W. Weil,et al.  Measure-Valued Valuations and Mixed Curvature Measures of Convex Bodies , 1999 .

[15]  Adrian Baddeley,et al.  Kaplan-Meier type estimators for linear contact distributions , 1996 .

[16]  John Frank Charles Kingman,et al.  Infinitely Divisible Point Processes , 1979 .

[17]  M. Zähle Random Cell Complexes and Generalised Sets , 1988 .

[18]  Stoyan,et al.  Stereological analysis and modelling of gradient structures , 1999, Journal of microscopy.

[19]  H. Groemer,et al.  ON THE EXTENSION OF ADDITIVE FUNCTIONALS ON CLASSES OF CONVEX SETS , 1978 .

[20]  Adrian Baddeley,et al.  The empty space hazard of a spatial pattern , 1994 .

[21]  D. Stoyan,et al.  Unbiased stereological estimation of the surface area of gradient surface processes , 1998, Advances in Applied Probability.

[22]  R. Schneider,et al.  Parallelmengen mit Vielfachheit und Steiner-Formeln , 1980 .

[23]  DH Fremlin Skeletons and Central Sets , 1997 .

[24]  O. Kallenberg Random Measures , 1983 .

[25]  Jean Serra,et al.  Image Analysis and Mathematical Morphology , 1983 .

[26]  Salvatore Torquato,et al.  Microstructure functions for a model of statistically inhomogeneous random media , 1997 .

[27]  K. Ball CONVEX BODIES: THE BRUNN–MINKOWSKI THEORY , 1994 .

[28]  Richard D. Gill,et al.  First contact distributions for spatial patterns: regularity and estimation , 1999, Advances in Applied Probability.

[29]  R. Schneider,et al.  Integral Geometry in Minkowski Spaces , 1997 .

[30]  Günter Last,et al.  On the empty space function of some germ-grain models , 1999, Pattern Recognit..

[31]  W. J. Thron,et al.  Encyclopedia of Mathematics and its Applications. , 1982 .

[32]  G. Matheron Random Sets and Integral Geometry , 1976 .