Dynamics of domain-wall motion driven by spin-orbit torque in antiferromagnets

The excitation of ultrafast dynamics in antiferromagnetic materials is an appealing feature for the realization of spintronic devices. Several experiments have shown that static and dynamic behaviors of the antiferromagnetic order are strictly related to the stabilization of multidomain states and the manipulation of their domain walls (DWs). Hence, a full micromagnetic framework should be used as a comprehensive theoretical tool for a quantitative understanding of those experimental findings. This model is used to perform numerical experiments to study the antiferromagnetic DW motion driven by the spin-orbit torque. We have derived simplified expressions for the DW width and velocity that exhibit a very good agreement with the numerical calculations in a wide range of parameters. Additionally, we have found that a mechanism limiting the maximum applicable current in an antiferromagnetic racetrack memory is the continuous domain nucleation from its edges, which is qualitatively different from what observed in the ferromagnetic case.

[1]  Jacques Miltat,et al.  Domain wall dynamics in nanowires , 2002 .

[2]  A. Brataas,et al.  Staggered dynamics in antiferromagnets by collective coordinates. , 2012, Physical review letters.

[3]  G. Finocchio,et al.  Performance of synthetic antiferromagnetic racetrack memory: domain wall versus skyrmion , 2016, 1610.00894.

[4]  N. Ntallis,et al.  Micromagnetic simulation of an antiferromagnetic particle , 2015 .

[5]  G. Beach,et al.  Current-driven dynamics of chiral ferromagnetic domain walls. , 2013, Nature materials.

[6]  Mathias Klaui,et al.  Manipulating antiferromagnets with magnetic fields: ratchet motion of multiple domain walls induced by asymmetric field pulses , 2016, 1608.05967.

[7]  J. Wunderlich,et al.  Electrically induced and detected Néel vector reversal in a collinear antiferromagnet , 2018, Nature Communications.

[8]  A. Fert,et al.  Dynamics of Dzyaloshinskii domain walls in ultrathin magnetic films , 2012, 1211.5970.

[9]  Werner Scholz,et al.  Micromagnetic simulation of antiferromagnetic/ferromagnetic structures , 2002 .

[10]  Bruno Azzerboni,et al.  Micromagnetic modeling of terahertz oscillations in an antiferromagnetic material driven by the spin Hall effect , 2018, Physical Review B.

[11]  P. Alam ‘G’ , 2021, Composites Engineering: An A–Z Guide.

[12]  B. Ivanov,et al.  Antiferromagnetic THz-frequency Josephson-like Oscillator Driven by Spin Current , 2016, Scientific Reports.

[13]  L. Torres,et al.  Micromagnetic Modeling of Dzyaloshinskii–Moriya Interaction in Spin Hall Effect Switching , 2014, IEEE Transactions on Magnetics.

[14]  C. Felser,et al.  The multiple directions of antiferromagnetic spintronics , 2018 .

[15]  J. Sinova,et al.  Current-induced spin-orbit torques in ferromagnetic and antiferromagnetic systems , 2018, Reviews of Modern Physics.

[16]  A. Brataas,et al.  Intrinsic magnetization of antiferromagnetic textures , 2015, 1506.06561.

[17]  S. Yuasa,et al.  A magnetic synapse: multilevel spin-torque memristor with perpendicular anisotropy , 2016, Scientific Reports.

[18]  J. Sinova,et al.  High Antiferromagnetic Domain Wall Velocity Induced by Néel Spin-Orbit Torques. , 2016, Physical review letters.

[19]  R. Duine,et al.  Antiferromagnetic metal spintronics , 2005, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[20]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[21]  S. Rohart,et al.  Skyrmion confinement in ultrathin film nanostructures in the presence of Dzyaloshinskii-Moriya interaction , 2013, 1310.0666.

[22]  S. Eisebitt,et al.  Fast current-driven domain walls and small skyrmions in a compensated ferrimagnet , 2018, Nature Nanotechnology.

[23]  Gebräuchliche Fertigarzneimittel,et al.  V , 1893, Therapielexikon Neurologie.

[24]  N. Kioussis,et al.  Damping and antidamping phenomena in metallic antiferromagnets: An ab initio study , 2018, Physical Review B.

[25]  W. Marsden I and J , 2012 .

[26]  N. L. Schryer,et al.  The motion of 180° domain walls in uniform dc magnetic fields , 1974 .

[27]  S. Parkin,et al.  Domain-wall velocities of up to 750 m s(-1) driven by exchange-coupling torque in synthetic antiferromagnets. , 2015, Nature nanotechnology.

[28]  Han-Chun Wu,et al.  Materials, Devices and Spin Transfer Torque in Antiferromagnetic Spintronics: A Concise Review , 2017 .

[29]  V. Loktev,et al.  Spintronics of antiferromagnetic systems (Review Article) , 2014 .

[30]  Mark Silberstein,et al.  SPIN: Seamless Operating System Integration of Peer-to-Peer DMA Between SSDs and GPUs , 2019, USENIX Annual Technical Conference.

[31]  J. Wunderlich,et al.  Antiferromagnetic spintronics. , 2015, Nature nanotechnology.

[32]  Luis Torres,et al.  Micromagnetic simulations using Graphics Processing Units , 2012 .

[33]  J. Goodenough,et al.  Temperature and bias dependence of anisotropic magnetoresistance in antiferromagnetic Sr$_{2}$IrO$_{4}$ , 2014 .

[34]  Mario Carpentieri,et al.  Experimental Demonstration of Spintronic Broadband Microwave Detectors and Their Capability for Powering Nanodevices , 2019, Physical Review Applied.

[35]  A. Rushforth,et al.  Electrical switching of an antiferromagnet , 2015, Science.

[36]  Byong‐Guk Park,et al.  Antiferromagnetic Domain Wall Motion Driven by Spin-Orbit Torques. , 2016, Physical review letters.

[37]  Yaliang Li,et al.  SCI , 2021, Proceedings of the 30th ACM International Conference on Information & Knowledge Management.

[38]  Takuo Ohkochi,et al.  Spin torque control of antiferromagnetic moments in NiO , 2017, Scientific Reports.

[39]  Andrew G. Glen,et al.  APPL , 2001 .

[40]  M. A. Hernandez,et al.  Universal chiral-triggered magnetization switching in confined nanodots , 2015, Scientific Reports.

[41]  C. Ross,et al.  Current-Induced Domain Wall Motion in a Compensated Ferrimagnet. , 2018, Physical review letters.

[42]  Weisheng Zhao,et al.  A Christmas-Tree-Like Magnetic Field Sensor Based on Domain Wall Depinning in a Notched Nanowire , 2018, IEEE Magnetics Letters.

[43]  J. Hirsch Spin Hall Effect , 1999, cond-mat/9906160.

[44]  V. Loktev,et al.  Spin transfer and current-induced switching in antiferromagnets , 2009, 0909.0234.

[45]  Satoru Emori,et al.  Current-driven dynamics of Dzyaloshinskii domain walls in the presence of in-plane fields: Full micromagnetic and one-dimensional analysis , 2014 .

[46]  R. Pisarev,et al.  Inertia-driven spin switching in antiferromagnets , 2009 .

[47]  I. Turek,et al.  Writing and reading antiferromagnetic Mn2Au by Néel spin-orbit torques and large anisotropic magnetoresistance , 2017, Nature Communications.

[48]  Antonio-José Almeida,et al.  NAT , 2019, Springer Reference Medizin.

[49]  D. Ralph,et al.  Spin-torque ferromagnetic resonance induced by the spin Hall effect. , 2010, Physical review letters.

[50]  Satoru Emori,et al.  Current-driven domain wall motion along high perpendicular anisotropy multilayers: The role of the Rashba field, the spin Hall effect, and the Dzyaloshinskii-Moriya interaction , 2013 .

[51]  Zhongming Zeng,et al.  Multilevel storage device based on domain-wall motion in a magnetic tunnel junction , 2017 .

[52]  S. Parkin,et al.  Magnetic Domain-Wall Racetrack Memory , 2008, Science.

[53]  K. Hwang Broadband circularly-polarised Spidron fractal slot antenna , 2009 .