Highly Nitridated Graphene–Li2S Cathodes with Stable Modulated Cycles

Dr. Y. Qiu, G. Rong, J. Yang, G. Li, S. Ma, X. Wang, Z. Pan, Y. Hou, Dr. M. Liu, Dr. F. Ye, Dr. W. Li, Prof. Y. Zhang i -Lab, Suzhou Institute of Nano-Tech and Nano-Bionics Chinese Academy of Sciences Suzhou, Jiangsu 215123 , China E-mail: ygzhang2012@sinano.ac.cn Dr. Y. Qiu, Dr. Z. W. Seh, Prof. X. Tao, Dr. H. Yao, Dr. N. Liu, Dr. R. Zhang, Dr. G. Zhou, Prof. Y. Cui Department of Materials Science and Engineering Stanford University Stanford , CA 94305 , USA E-mail: yicui@stanford.edu Prof. J. Wang, Prof. S. Fan, Prof. Y. Zhang Department of Physics Tsinghua University Beijing 100084 , China Prof. Y. Cui Stanford Institute for Materials and Energy Sciences SLAC National Accelerator Laboratory 2575 Sand Hill Road , Menlo Park , CA 94025 , USA

[1]  Zhiqun Lin,et al.  Graphene‐Containing Nanomaterials for Lithium‐Ion Batteries , 2015 .

[2]  Jun Lu,et al.  Progress in Mechanistic Understanding and Characterization Techniques of Li‐S Batteries , 2015 .

[3]  Arumugam Manthiram,et al.  Dual‐Confined Flexible Sulfur Cathodes Encapsulated in Nitrogen‐Doped Double‐Shelled Hollow Carbon Spheres and Wrapped with Graphene for Li–S Batteries , 2015 .

[4]  Yuegang Zhang,et al.  Dense integration of graphene and sulfur through the soft approach for compact lithium/sulfur battery cathode , 2015 .

[5]  Yunhui Huang,et al.  Slurryless Li2S/reduced graphene oxide cathode paper for high-performance lithium sulfur battery. , 2015, Nano letters.

[6]  Changhong Wang,et al.  Monodispersed sulfur nanoparticles for lithium-sulfur batteries with theoretical performance. , 2015, Nano letters.

[7]  Jun Chen,et al.  Sulfur nanodots electrodeposited on ni foam as high-performance cathode for Li-S batteries. , 2015, Nano letters.

[8]  Xiangbo Meng,et al.  Vapor-phase atomic-controllable growth of amorphous Li2S for high-performance lithium-sulfur batteries. , 2014, ACS nano.

[9]  S. Dou,et al.  Sulfur-graphene nanostructured cathodes via ball-milling for high-performance lithium-sulfur batteries. , 2014, ACS nano.

[10]  M. Ashuri,et al.  Li2S encapsulated by nitrogen-doped carbon for lithium sulfur batteries , 2014 .

[11]  N. Wu,et al.  Understanding dynamics of polysulfide dissolution and re-deposition in working lithium–sulfur battery by in-operando transmission X-ray microscopy , 2014 .

[12]  Jung Ho Yu,et al.  Two-dimensional layered transition metal disulphides for effective encapsulation of high-capacity lithium sulphide cathodes , 2014, Nature Communications.

[13]  Jinghua Guo,et al.  High-rate, ultralong cycle-life lithium/sulfur batteries enabled by nitrogen-doped graphene. , 2014, Nano letters.

[14]  Yuegang Zhang,et al.  Polyaniline-modified cetyltrimethylammonium bromide-graphene oxide-sulfur nanocomposites with enhanced performance for lithium-sulfur batteries , 2014, Nano Research.

[15]  Arumugam Manthiram,et al.  Rechargeable lithium-sulfur batteries. , 2014, Chemical reviews.

[16]  J. Choi,et al.  Hierarchical porous carbon by ultrasonic spray pyrolysis yields stable cycling in lithium-sulfur battery. , 2014, Nano letters.

[17]  Jiujun Zhang,et al.  A Review of Graphene‐Based Nanostructural Materials for Both Catalyst Supports and Metal‐Free Catalysts in PEM Fuel Cell Oxygen Reduction Reactions , 2014 .

[18]  Kefei Li,et al.  3D Hyperbranched Hollow Carbon Nanorod Architectures for High‐Performance Lithium‐Sulfur Batteries , 2014 .

[19]  Yi Cui,et al.  Improving lithium–sulphur batteries through spatial control of sulphur species deposition on a hybrid electrode surface , 2014, Nature Communications.

[20]  Yi Cui,et al.  Sulfur cathodes with hydrogen reduced titanium dioxide inverse opal structure. , 2014, ACS Nano.

[21]  Yi Cui,et al.  High-capacity Li2S–graphene oxide composite cathodes with stable cycling performance , 2014 .

[22]  Yi Cui,et al.  Facile synthesis of Li2S–polypyrrole composite structures for high-performance Li2S cathodes , 2014 .

[23]  A. Manthiram,et al.  Li2S‐Carbon Sandwiched Electrodes with Superior Performance for Lithium‐Sulfur Batteries , 2014 .

[24]  Arumugam Manthiram,et al.  A strategic approach to recharging lithium-sulphur batteries for long cycle life , 2013, Nature Communications.

[25]  Min-Kyu Song,et al.  A long-life, high-rate lithium/sulfur cell: a multifaceted approach to enhancing cell performance. , 2013, Nano letters.

[26]  Gang Chen,et al.  Thermoelectric Property Study of Nanostructured p‐Type Half‐Heuslers (Hf, Zr, Ti)CoSb0.8Sn0.2 , 2013 .

[27]  Jie Liu,et al.  Significantly improved long-cycle stability in high-rate Li-S batteries enabled by coaxial graphene wrapping over sulfur-coated carbon nanofibers. , 2013, Nano letters.

[28]  Guangmin Zhou,et al.  Fibrous hybrid of graphene and sulfur nanocrystals for high-performance lithium-sulfur batteries. , 2013, ACS nano.

[29]  Guangyuan Zheng,et al.  High-performance hollow sulfur nanostructured battery cathode through a scalable, room temperature, one-step, bottom-up approach , 2013, Proceedings of the National Academy of Sciences.

[30]  Hong Xiaobin,et al.  Analysis of the Sulfur Cathode Capacity Fading Mechanism and Review of the Latest Development for Li-S Battery , 2013 .

[31]  Guangyuan Zheng,et al.  Nanostructured sulfur cathodes. , 2013, Chemical Society reviews.

[32]  C. Liang,et al.  Lithium superionic sulfide cathode for all-solid lithium-sulfur batteries. , 2013, ACS nano.

[33]  Min-Kyu Song,et al.  Lithium/sulfur batteries with high specific energy: old challenges and new opportunities. , 2013, Nanoscale.

[34]  Guangyuan Zheng,et al.  Amphiphilic surface modification of hollow carbon nanofibers for improved cycle life of lithium sulfur batteries. , 2013, Nano letters.

[35]  Guangyuan Zheng,et al.  Sulphur–TiO2 yolk–shell nanoarchitecture with internal void space for long-cycle lithium–sulphur batteries , 2013, Nature Communications.

[36]  E. Cairns,et al.  Nanostructured Li₂S-C composites as cathode material for high-energy lithium/sulfur batteries. , 2012, Nano letters.

[37]  Arumugam Manthiram,et al.  Self-weaving sulfur-carbon composite cathodes for high rate lithium-sulfur batteries. , 2012, Physical chemistry chemical physics : PCCP.

[38]  Yi Cui,et al.  High-capacity micrometer-sized Li2S particles as cathode materials for advanced rechargeable lithium-ion batteries. , 2012, Journal of the American Chemical Society.

[39]  A. Hayashi,et al.  High-capacity Li2S–nanocarbon composite electrode for all-solid-state rechargeable lithium batteries , 2012 .

[40]  Lei Wang,et al.  Porous carbon nanofiber–sulfur composite electrodes for lithium/sulfur cells , 2011 .

[41]  Chunsheng Wang,et al.  Sulfur-impregnated disordered carbon nanotubes cathode for lithium-sulfur batteries. , 2011, Nano letters.

[42]  Yongcai Qiu,et al.  High performance supercapacitors based on highly conductive nitrogen-doped graphene sheets. , 2011, Physical chemistry chemical physics : PCCP.

[43]  L. Archer,et al.  Porous hollow carbon@sulfur composites for high-power lithium-sulfur batteries. , 2011, Angewandte Chemie.

[44]  Hyun Joon Shin,et al.  Nitrogen-doped graphene for high-performance ultracapacitors and the importance of nitrogen-doped sites at basal planes. , 2011, Nano letters.

[45]  Bruno Scrosati,et al.  A high-performance polymer tin sulfur lithium ion battery. , 2010, Angewandte Chemie.

[46]  Yi Cui,et al.  New nanostructured Li2S/silicon rechargeable battery with high specific energy. , 2010, Nano letters.

[47]  L. Nazar,et al.  A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. , 2009, Nature materials.