Optimization of module length for continuous direct contact membrane distillation process

Abstract Module length plays an important role in dictating the overall performance of membrane distillation (MD) process. In current study, the performance behavior of a small scale module applied for direct contact membrane distillation (DCMD), has been simulated and extrapolated to obtain temperature and flux profiles along the modules with lengths varying from 10 to 2000 cm. The profiles obtained under various conditions have been used to calculate the key performance parameters of a plant treating seawater at feed capacity of 1000 m 3 /h. The operational mode of the plant comprises of multiple stages connected in series to achieve a desired recovery factor. The effect of module length on key performance parameters including specific energy consumption, membrane area and number of stages has been analyzed. To calculate the optimum module length, the performance parameters have been translated into operational and fixed capital costs by performing a detailed cost analysis based on existing pilot MD units installed under the framework of European project MEDIRAS. Dependence of optimum module length on operating conditions, membrane thickness and overall recovery factor has been analyzed.

[1]  Enrico Drioli,et al.  Membrane distillation: Recent developments and perspectives , 2015 .

[2]  Menachem Elimelech,et al.  Direct contact membrane distillation with heat recovery: Thermodynamic insights from module scale modeling , 2014 .

[3]  Donald Quentin Kern,et al.  Process heat transfer , 1950 .

[4]  Sebastian Büttner,et al.  Experimental study of the memsys vacuum-multi-effect-membrane-distillation (V-MEMD) module , 2013 .

[5]  Jack Gilron,et al.  High water recovery in direct contact membrane distillation using a series of cascades , 2013 .

[6]  N. Vlachakis,et al.  Energy consumption and membrane replacement cost for seawater RO desalination plants , 2003 .

[7]  E. Drioli,et al.  Potential of membrane distillation in seawater desalination: Thermal efficiency, sensitivity study and cost estimation , 2008 .

[8]  Hisham Ettouney,et al.  Evaluating the economics of desalination , 2002 .

[9]  K. Sirkar,et al.  Desalination by air gap membrane distillation using a two hollow-fiber-set membrane module , 2012 .

[10]  Antoni W. Morawski,et al.  Membrane distillation with laminar flow , 1997 .

[11]  Enrico Drioli,et al.  Membrane distillation-crystallization of seawater reverse osmosis brines , 2010 .

[12]  E. N. Sieder,et al.  Heat Transfer and Pressure Drop of Liquids in Tubes , 1936 .

[13]  R. Tol,et al.  Evaluating the costs of desalination and water transport , 2005 .

[14]  Mikel Duke,et al.  Performance assessment of membrane distillation for skim milk and whey processing. , 2014, Journal of dairy science.

[15]  Ludovic F. Dumée,et al.  Advances in Membrane Distillation for Water Desalination and Purification Applications , 2013 .

[16]  Stephen R Gray,et al.  Direct contact membrane distillation (DCMD): Experimental study on the commercial PTFE membrane and , 2011 .

[17]  Tai‐Shung Chung,et al.  Recent advances in membrane distillation processes: Membrane development, configuration design and application exploring , 2015 .

[18]  Anthony G. Fane,et al.  Heat transport and membrane distillation coefficients in direct contact membrane distillation , 2003 .

[19]  L. Martinez-diez,et al.  Temperature and concentration polarization in membrane distillation of aqueous salt solutions , 1999 .

[20]  Linh T. T. Vu,et al.  Modelling the simultaneous heat and mass transfer of direct contact membrane distillation in hollow fibre modules , 2010 .

[21]  J. M. QCoulson J. M. Coulson,et al.  Coulson & Richardson's Chemical engineering. Vol.1, Fluid flow, heat transfer and mass transfer , 1996 .

[22]  Julián Blanco,et al.  Experimental evaluation of two pilot-scale membrane distillation modules used for solar desalination , 2012 .

[23]  Xing Yang,et al.  Optimization of microstructured hollow fiber design for membrane distillation applications using CFD modeling , 2012 .

[24]  Arturo A. Keller,et al.  A stochastic analysis of steady state two‐phase flow in heterogeneous media , 2005 .

[25]  E. Drioli,et al.  Effect of module design and flow patterns on performance of membrane distillation process , 2015 .

[26]  Chuyang Y. Tang,et al.  Membrane module design and dynamic shear-induced techniques to enhance liquid separation by hollow fiber modules: a review , 2013 .

[27]  Junghui Chen,et al.  Modeling and optimization of hollow fiber DCMD module for desalination , 2008 .

[28]  E. Drioli,et al.  Integrated membrane systems for seawater desalination , 2006 .

[29]  Marek Gryta,et al.  Heat transport in the membrane distillation process , 1998 .

[30]  E. Drioli,et al.  Direct contact membrane distillation for treatment of oilfield produced water , 2014 .

[31]  John H. Lienhard,et al.  Effects of membrane properties on water production cost in small scale membrane distillation systems , 2012 .

[32]  Siegfried Ripperger,et al.  Desalination using membrane distillation: Flux enhancement by feed water deaeration on spiral-wound modules , 2012 .

[33]  Young-Nam Kwon,et al.  Preparation and applications of poly vinyl alcohol (PVA) modified cellulose acetate (CA) membranes for forward osmosis (FO) processes , 2015 .

[34]  Enrico Drioli,et al.  Experimental and theoretical evaluation of temperature polarization phenomenon in direct contact membrane distillation , 2013 .

[35]  N. Ghaffour,et al.  Material gap membrane distillation: A new design for water vapor flux enhancement , 2013 .

[36]  Noam Lior,et al.  An experimental study of solar thermal vacuum membrane distillation desalination , 2014 .

[37]  Xing Yang,et al.  Numerical simulation of heat and mass transfer in direct membrane distillation in a hollow fiber module with laminar flow , 2011 .

[38]  Anthony G. Fane,et al.  Direct contact membrane distillation mechanism for high concentration NaCl solutions , 2006 .