High-resolution electron microscopy observations of the interface structure of continuous precipitates in a Mg-Al alloy and interpretation with the O-lattice theory

The continuous precipitation of the β b.c.c. phase in Mg-Al gives rise to elongated platelets which exhibit a Burgers orientation relationship and whose habit plane is parallel to the matrix basal plane. The habit plane is found to contain a periodic array of secondary edge dislocations. It is shown that the epitaxial relationship, the growth direction and the interfacial structure can be interpreted by applying the CSL/DSC and O-lattice models.

[1]  J. B. Clark,et al.  Age hardening in a Mg-9 wt.% Al alloy , 1968 .

[2]  H. Grimmer A reciprocity relation between the coincidence site lattice and the DSC lattice , 1974 .

[3]  U. Dahmen Orientation relationships in precipitation systems , 1982 .

[4]  G. Weatherly,et al.  The precipitation behavior of a Zr-2.5 wt pct Nb alloy , 1988 .

[5]  W. Pitsch,et al.  Die Ausscheidungsform des ε-Karbids im Ferrit und im Martensit beim Anlassen , 1958 .

[6]  W. G. Burgers On the process of transition of the cubic-body-centered modification into the hexagonal-close-packed modification of zirconium , 1934 .

[7]  A. Crawley,et al.  Effect of two-step aging on the precipitate structure in magnesium alloy AZ91 , 1974, Metallurgical and Materials Transactions B.

[8]  W. Bollmann On the geometry of grain and phase boundaries , 1967 .

[9]  A. Howie,et al.  Electron Microscopy of Thin Crystals , 1977, Nature.

[10]  H. Aaronson,et al.  Interphase boundary structures of intragranular proeutectoid α plates in a hypoeutectoid TiCr alloy , 1991 .

[11]  A. Crawley,et al.  Precipitate morphology and orientation relationships in an aged Mg-9% Al-1% Zn-0.3% Mn alloy , 1973 .

[12]  D. A. Porter,et al.  Microanalysis and cell boundary velocity measurements for the cellular reaction in a Mg-9% Al alloy , 1978, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[13]  D. Duly Application of the invariant line model for b.c.c./h.c.p. couples: A criterion based on surface variations , 1993 .

[14]  R. N. Parkins,et al.  Lattice spacing relationships in magnesium solid solutions , 1959 .

[15]  G. Purdy,et al.  A TEM study of the crystallography and interphase boundary structure of α precipitates in a Zr-2.5 wt% Nb alloy , 1993 .

[16]  D. Warrington,et al.  Dislocation networks in high-angle grain boundaries , 1972 .

[17]  C. Bauer,et al.  Characterization of [001] tilt boundaries in gold by high-resolution transmission electron microscopy , 1981 .

[18]  G. Raynor The lattice spacings of the primary solid solutions of silver, cadmium and indium in magnesium , 1940, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[19]  G. Dunlop,et al.  The crystallography of secondary carbide precipitation in high speed steel , 1984 .

[20]  K. H. Westmacott,et al.  A simple model for the prediction of coherent and semicoherent plate precipitate habit planes , 1986 .

[21]  J. Murray The Al−Mg (Aluminum−Magnesium) system , 1982 .

[22]  K. Kuo,et al.  An O-lattice interpretation of orientation relationships between M2C precipitates and ferrite , 1986 .

[23]  G. Weatherly,et al.  The β to α transformation in a Zr-2.5 wt% Nb alloy , 1989 .

[24]  W. B. Pearson,et al.  Handbook of Crystallographic Data for Intermetallic Phases , 1984 .

[25]  H. Aaronson,et al.  Overview no. 57 Morphology, crystallography and kinetics of sympathetic nucleation , 1987 .