Tight linear convergence rate bounds for Douglas-Rachford splitting and ADMM

Douglas-Rachford splitting and the alternating direction method of multipliers (ADMM) can be used to solve convex optimization problems that consist of a sum of two functions. Convergence rate estimates for these algorithms have received much attention lately. In particular, linear convergence rates have been shown by several authors under various assumptions. One such set of assumptions is strong convexity and smoothness of one of the functions in the minimization problem. The authors recently provided a linear convergence rate bound for such problems. In this paper, we show that this rate bound is tight for the class of problems under consideration.

[1]  D. Gabay Applications of the method of multipliers to variational inequalities , 1983 .

[2]  R. Glowinski,et al.  Sur l'approximation, par éléments finis d'ordre un, et la résolution, par pénalisation-dualité d'une classe de problèmes de Dirichlet non linéaires , 1975 .

[3]  Euhanna Ghadimi,et al.  Optimal Parameter Selection for the Alternating Direction Method of Multipliers (ADMM): Quadratic Problems , 2013, IEEE Transactions on Automatic Control.

[4]  Wotao Yin,et al.  Faster Convergence Rates of Relaxed Peaceman-Rachford and ADMM Under Regularity Assumptions , 2014, Math. Oper. Res..

[5]  P. Lions,et al.  Splitting Algorithms for the Sum of Two Nonlinear Operators , 1979 .

[6]  H. H. Rachford,et al.  The Numerical Solution of Parabolic and Elliptic Differential Equations , 1955 .

[7]  Wotao Yin,et al.  On the Global and Linear Convergence of the Generalized Alternating Direction Method of Multipliers , 2016, J. Sci. Comput..

[8]  H. H. Rachford,et al.  On the numerical solution of heat conduction problems in two and three space variables , 1956 .

[9]  Stephen P. Boyd,et al.  Metric Selection in Douglas-Rachford Splitting and ADMM , 2014 .

[10]  Laurent Demanet,et al.  Eventual linear convergence of the Douglas-Rachford iteration for basis pursuit , 2013, Math. Comput..

[11]  B. Mercier,et al.  A dual algorithm for the solution of nonlinear variational problems via finite element approximation , 1976 .

[12]  Hyunjoong Kim,et al.  Functional Analysis I , 2017 .

[13]  Zhi-Quan Luo,et al.  On the linear convergence of the alternating direction method of multipliers , 2012, Mathematical Programming.

[14]  Stephen P. Boyd,et al.  Diagonal scaling in Douglas-Rachford splitting and ADMM , 2014, 53rd IEEE Conference on Decision and Control.

[15]  R. Rockafellar Convex Analysis: (pms-28) , 1970 .

[16]  A. Raghunathan,et al.  ADMM for Convex Quadratic Programs: Linear Convergence and Infeasibility Detection , 2014, 1411.7288.

[17]  Michael I. Jordan,et al.  A General Analysis of the Convergence of ADMM , 2015, ICML.

[18]  Alberto Bemporad,et al.  Douglas-rachford splitting: Complexity estimates and accelerated variants , 2014, 53rd IEEE Conference on Decision and Control.

[19]  Bingsheng He,et al.  On the O(1/n) Convergence Rate of the Douglas-Rachford Alternating Direction Method , 2012, SIAM J. Numer. Anal..

[20]  Damek Davis,et al.  Convergence Rate Analysis of Several Splitting Schemes , 2014, 1406.4834.