Modular Quantum Key Distribution Setup for Research and Development Applications

Quantum key distribution (QKD), ensuring the unconditional security of information, attracts a significant deal of interest. An important task is to design QKD systems as a platform for education as well as for research and development applications and fast prototyping new QKD protocols. Here, we present a modular QKD setup driven by National Instruments (NI) cards with open source LabView code, open source Python code for post-processing procedures, and open source protocol for external applications. An important feature of the apparatus developed is its flexibility offering the possibility to modify optical schemes, as well as prototype, and verify novel QKD protocols. The other distinctive feature of the setup developed is the implementation of the decoy-state protocol, which is a standard tool for secure long-distance quantum communications. By testing the plug-and-play scheme realizing BB84 and decoy-state BB84 QKD protocols, we show that the developed QKD setup shows a high degree of robustness beyond laboratory conditions. We demonstrate the results of the use of the developed modular setup for QKD experiments in the urban environment.

[1]  V. L. Kurochkin,et al.  Effect of crosstalk on QBER in QKD in urban telecommunication fiber lines , 2016, International Conference on Micro- and Nano-Electronics.

[2]  E. O. Kiktenko,et al.  Practical issues in decoy-state quantum key distribution based on the central limit theorem , 2017, ArXiv.

[3]  E. O. Kiktenko,et al.  Symmetric Blind Information Reconciliation and Hash-function-based Verification for Quantum Key Distribution , 2017, Lobachevskii Journal of Mathematics.

[4]  Bing Qi,et al.  Practical challenges in quantum key distribution , 2016, npj Quantum Information.

[5]  H. Weinfurter,et al.  The SECOQC quantum key distribution network in Vienna , 2009, 2009 35th European Conference on Optical Communication.

[6]  W. Munro,et al.  Low Cost and Compact Quantum Cryptography , 2006, quant-ph/0608213.

[7]  A. V. Duplinskiy,et al.  Quantum-Secured Data Transmission in Urban Fiber-Optics Communication Lines , 2017, Journal of Russian Laser Research.

[8]  Shihan Sajeed,et al.  Attacks exploiting deviation of mean photon number in quantum key distribution and coin-tossing , 2014, ArXiv.

[9]  Gilles Brassard,et al.  Quantum Cryptography , 2005, Encyclopedia of Cryptography and Security.

[10]  A. S. Trushechkin,et al.  Security of quantum key distribution with detection-efficiency mismatch in the single-photon case: Tight bounds , 2018, Physical Review A.

[11]  J. Skaar,et al.  Hacking commercial quantum cryptography systems by tailored bright illumination , 2010, 1008.4593.

[12]  Li Qian,et al.  Experimental demonstration of polarization encoding measurement-device-independent quantum key distribution. , 2013, Physical review letters.

[13]  V. L. Kurochkin,et al.  Educational Potential of Quantum Cryptography and Its Experimental Modular Realization , 2017, 1710.08090.

[14]  Phillip Rogaway,et al.  Fast Universal Hashing with Small Keys and No Preprocessing: The PolyR Construction , 2000, ICISC.

[15]  V. L. Kurochkin,et al.  Experimental studies in quantum cryptography , 2011 .

[16]  W. Wootters,et al.  A single quantum cannot be cloned , 1982, Nature.

[17]  Xiongfeng Ma,et al.  Decoy state quantum key distribution. , 2004, Physical review letters.

[18]  Shihan Sajeed,et al.  Finite-key-size effect in a commercial plug-and-play QKD system , 2016, 1610.06876.

[19]  H. Lo,et al.  Practical Decoy State for Quantum Key Distribution , 2005, quant-ph/0503005.

[20]  Carreño Carreño,et al.  Evaluación de la diversidad taxonómica y funcional de la comunidad microbiana relacionada con el ciclo del nitrógeno en suelos de cultivo de arroz con diferentes manejos del tamo , 2020 .

[21]  C. E. SHANNON,et al.  A mathematical theory of communication , 1948, MOCO.

[22]  J. P. von der Weid,et al.  Experimental polarization encoded quantum key distribution over optical fibres with real-time continuous birefringence compensation , 2009, 0905.0394.

[23]  Marco Tomamichel,et al.  A largely self-contained and complete security proof for quantum key distribution , 2015, 1506.08458.

[24]  Xiongfeng Ma,et al.  Improved key-rate bounds for practical decoy-state quantum-key-distribution systems , 2016, 1611.02524.

[25]  Xiang‐Bin Wang,et al.  Beating the PNS attack in practical quantum cryptography , 2004 .

[26]  R. V. Ozhegov,et al.  Long-distance fiber-optic quantum key distribution using superconducting detectors , 2015 .

[27]  Miguel A. Larotonda,et al.  Autonomous open-source hardware apparatus for quantum key distribution , 2016 .

[28]  E. O. Kiktenko,et al.  Post-processing procedure for industrial quantum key distribution systems , 2016, ArXiv.

[29]  N. Gisin,et al.  “Plug and play” systems for quantum cryptography , 1996, quant-ph/9611042.

[30]  Marco Tomamichel,et al.  Tight finite-key analysis for quantum cryptography , 2011, Nature Communications.

[31]  David J. C. MacKay,et al.  Good Error-Correcting Codes Based on Very Sparse Matrices , 1997, IEEE Trans. Inf. Theory.

[32]  Wei Cui,et al.  Finite-key analysis for measurement-device-independent quantum key distribution , 2013, Nature Communications.

[33]  O. S. Popel,et al.  Proceedings of the Scientific-Practical Conference "Research and Development - 2016" , 2018 .

[34]  E. O. Kiktenko,et al.  Symmetric blind information reconciliation for quantum key distribution , 2016, ArXiv.

[35]  Johannes Skaar,et al.  Error estimation, error correction and verification in quantum key distribution , 2012, IET Inf. Secur..

[36]  W. Munro,et al.  Low cost and compact quantum key distribution , 2006, quant-ph/0608213.

[37]  Jane Qiu,et al.  Quantum communications leap out of the lab , 2014, Nature.

[38]  V. Scarani,et al.  The security of practical quantum key distribution , 2008, 0802.4155.

[39]  Feihu Xu,et al.  Concise security bounds for practical decoy-state quantum key distribution , 2013, 1311.7129.

[40]  E. O. Kiktenko,et al.  Error Estimation at the Information Reconciliation Stage of Quantum Key Distribution , 2018, Journal of Russian Laser Research.

[41]  Won-Young Hwang Quantum key distribution with high loss: toward global secure communication. , 2003, Physical review letters.

[42]  A. V. Duplinskiy,et al.  Demonstration of a quantum key distribution network in urban fibre-optic communication lines , 2017 .

[43]  S. N. Molotkov CONFERENCES AND SYMPOSIA: Quantum cryptography and V A Kotel'nikov's one-time key and sampling theorems , 2006 .

[44]  R. V. Ozhegov,et al.  Quantum key distribution over 300 , 2014, Other Conferences.