Alteration of HERG current profile during the cardiac ventricular action potential, following a pore mutation.

HERG is believed to encode the major sub-unit of the cardiac 'rapid' delayed rectifier K channel (I(Kr)). Both I(Kr) and HERG exhibit marked inward rectification at positive membrane potentials due to rapid inactivation and this is thought to influence significantly the contribution of the current to cardiac action potential (AP) repolarisation. We investigated directly the role played by rapid inactivation, by measuring current activated by a ventricular AP waveform, from Chinese Hamster Ovary cells transfected with HERG cDNA with a point-mutation (S631A) in the pore region. Square command pulses elicited HERG-S631A current which increased progressively in magnitude with test potential up to +30/+40 mV (n=6). During test pulses to +40mV, HERG-S631A exhibited little inactivation compared to wildtype HERG. During an action potential command, WT-HERG current developed progressively during the AP plateau and slow repolarisation phase, showing maximal current between -30mV and -40 mV (n=10). In contrast, HERG-S631A current increased earlier during the AP plateau, with a maximal amplitude near +30mV (n=7). Current then declined as the AP proceeded, giving rise to a 'bow'- or 'inverted-U-' shaped current profile. A mathematical model with inactivation removed from the HERG current reproduced the I-V profile of HERG-S631A. These data provide a direct demonstration that rapid inactivation normally plays a critical role in determining both time-course and voltage dependence of HERG/I(Kr) -current during the cardiac ventricular AP.

[1]  D A Terrar,et al.  Separation of the components of the delayed rectifier potassium current using selective blockers of IKr and IKs in guinea‐pig isolated ventricular myocytes , 1996, Experimental physiology.

[2]  M. Sanguinetti,et al.  A mechanistic link between an inherited and an acquird cardiac arrthytmia: HERG encodes the IKr potassium channel , 1995, Cell.

[3]  M. Sanguinetti,et al.  A mutation in the pore region of HERG K+ channels expressed in Xenopus oocytes reduces rectification by shifting the voltage dependence of inactivation , 1998, The Journal of physiology.

[4]  M. Sanguinetti,et al.  Two components of cardiac delayed rectifier K+ current. Differential sensitivity to block by class III antiarrhythmic agents , 1990, The Journal of general physiology.

[5]  E. Green,et al.  A molecular basis for cardiac arrhythmia: HERG mutations cause long QT syndrome , 1995, Cell.

[6]  D. Noble,et al.  Improved guinea-pig ventricular cell model incorporating a diadic space, IKr and IKs, and length- and tension-dependent processes. , 1998, The Canadian journal of cardiology.

[7]  S. Heinemann,et al.  Molecular determinants for activation and inactivation of HERG, a human inward rectifier potassium channel. , 1996, The Journal of physiology.

[8]  Y Rudy,et al.  Two components of the delayed rectifier K+ current in ventricular myocytes of the guinea pig type. Theoretical formulation and their role in repolarization. , 1995, Circulation research.

[9]  Gary Yellen,et al.  The inward rectification mechanism of the HERG cardiac potassium channel , 1996, Nature.

[10]  C. January,et al.  Properties of HERG channels stably expressed in HEK 293 cells studied at physiological temperature. , 1998, Biophysical journal.

[11]  D A Terrar,et al.  The deactivation kinetics of the delayed rectifier components IKr and IKs in guinea‐pig isolated ventricular myocytes , 1996, Experimental physiology.

[12]  G. Robertson,et al.  HERG, a human inward rectifier in the voltage-gated potassium channel family. , 1995, Science.