Recent trends in random number and random vector generation

[1]  Harald Niederreiter,et al.  Lower bounds for the discrepancy of inversive congruential pseudorandom numbers , 1990 .

[2]  H. Niederreiter,et al.  Statistical independence properties of pseudorandom vectors produced by matrix generators , 1990 .

[3]  H. Niederreiter,et al.  On the lattice structure of a nonlinear generator with modulus 2 a , 1990 .

[4]  Harald Niederreiter,et al.  Figures of merit for digital multistep pseudorandom numbers , 1990 .

[5]  H. Niederreiter Pseudorandom numbers generated from shift register sequences , 1990 .

[6]  G. S. Fishman Multiplicative congruential random number generators with modulus 2^{}: an exhaustive analysis for =32 and a partial analysis for =48 , 1990 .

[7]  Jürgen Eichenauer-Herrmann,et al.  A remark on long-range correlations in multiplicative congruential pseudo random number generators , 1989 .

[8]  Optimal coefficients modulo prime powers in the three-dimensional case , 1989 .

[9]  Lothar Afflerbach,et al.  The exact determination of rectangle discrepancy for linear congruential pseudorandom numbers , 1989 .

[10]  A. V. Wijngaarden Mathematics and computing , 1989 .

[11]  Jürgen Lehn,et al.  On the period length of pseudorandom vector sequences generated by matrix generators , 1989 .

[12]  Harald Niederreiter,et al.  The serial test for congruential pseudorandom numbers generated by inversions , 1989 .

[13]  H. Niederreiter,et al.  Remarks on nonlinear congruential pseudorandom numbers , 1988 .

[14]  J. Lehn,et al.  Marsaglia’s lattice test and non-linear congruential pseudo random number generators , 1988 .

[15]  A. Ecker,et al.  Optimal multipliers for linear congruential pseudo-random number generators with prime moduli , 1988 .

[16]  H. Niederreiter Low-discrepancy and low-dispersion sequences , 1988 .

[17]  A. Matteis,et al.  Parallelization of random number generators and long-range correlations , 1988 .

[18]  Ora E. Percus,et al.  Long range correlations in linear congruential generators , 1988 .

[19]  H. Grothe,et al.  The lattice structure of pseudo-random vectors generated by matrix generators , 1988 .

[20]  S. Tezuka A heurisitic approach for finding asymptotically random GFSR generators , 1988 .

[21]  Harald Niederreiter,et al.  Statistical independence of nonlinear congruential pseudorandom numbers , 1988 .

[22]  Harald Niederreiter,et al.  On Marsaglia's lattice test for pseudorandom numbers , 1988 .

[23]  Pierre L'Ecuyer,et al.  Efficient and portable combined random number generators , 1988, CACM.

[24]  Paul Bratley,et al.  Algorithm 659: Implementing Sobol's quasirandom sequence generator , 1988, TOMS.

[25]  Masanori Fushimi,et al.  Designing a Uniform Random Number Generator Whose Subsequences are k-Distributed , 1988, SIAM J. Comput..

[26]  J. Lehn,et al.  A nonlinear congruential pseudorandom number generator with power of two modulus , 1988 .

[27]  Shu Tezuka On optimal GFSR pseudorandom number generators , 1988 .

[28]  Harald Niederreiter,et al.  The serial test for digital k-step pseudorandom numbers , 1988 .

[29]  Harald Niederreiter,et al.  Quasi-Monte Carlo Methods for Multidimensional Numerical Integration , 1988 .

[30]  István Deák,et al.  Multidimensional Integration and Stochastic Programming , 1988 .

[31]  H. Niederreiter Point sets and sequences with small discrepancy , 1987 .

[32]  Holger Grothe,et al.  Matrix generators for pseudo-random vector generation , 1987 .

[33]  Harald Niederreiter,et al.  A statistical analysis of generalized feedback shift register pseudorandom number generators , 1987 .

[34]  Shu Tezuka On the discrepancy of GFSR pseudorandom numbers , 1987, JACM.

[35]  Jürgen Lehn,et al.  A multiple recursive non-linear congruential pseudo random number generator , 1987 .

[36]  Jürgen Lehn,et al.  On the structure of quadratic congruential sequences , 1987 .

[37]  Brian Wichmann,et al.  Building a random-number generator , 1987 .

[38]  B. J. Collings String decomposition of full-period tausworthe sequences , 1987 .

[39]  Jürgen Lehn,et al.  A non-linear congruential pseudo random number generator , 1986 .

[40]  Bennett L. Fox,et al.  Algorithm 647: Implementation and Relative Efficiency of Quasirandom Sequence Generators , 1986, TOMS.

[41]  Lothar Afflerbach The sub-lattice structure of linear congruential random number generators , 1986 .

[42]  Bruce Jay Collings,et al.  Initializing generalized feedback shift register pseudorandom number generators , 1986, JACM.

[43]  Raymond F. Koopman The orders of equidistribution of subsequences of some asymptotically random sequences , 1986, CACM.

[44]  Harald Niederreiter,et al.  Introduction to finite fields and their applications: List of Symbols , 1986 .

[45]  Paul Bratley,et al.  A guide to simulation (2nd ed.) , 1986 .

[46]  L. Devroye Non-Uniform Random Variate Generation , 1986 .

[47]  L. R. Moore,et al.  An Exhaustive Analysis of Multiplicative Congruential Random Number Generators with Modulus $2^{31} - 1$ , 1986 .

[48]  J. R. Isaac,et al.  Design and analysis of parallel Monte Carlo algorithms , 1985, PPSC.

[49]  G. Marsaglia,et al.  Matrices and the structure of random number sequences , 1985 .

[50]  Harald Niederreiter The serial test for pseudo-random numbers generated by the linear congruential method , 1985 .

[51]  Harald Niederreiter The Performance of k-Step Pseudorandom Number Generators under the Uniformity Test , 1984 .

[52]  Brian David Ripley,et al.  The lattice structure of pseudo-random number generators , 1983, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[53]  Shu Tezuka,et al.  The k-distribution of generalized feedback shift register pseudorandom numbers , 1983, CACM.

[54]  Masanori Fushimi Increasing the Orders of Equidistribution of the Leading Bits of the Tausworthe Sequence , 1983, Inf. Process. Lett..

[55]  Harald Niederreiter,et al.  Optimal multipliers for pseudo-random number generation by the linear congruential method , 1983 .

[56]  Harald Niederreiter Applications des corps finis aux nombres pseudo-aléatoires , 1983 .

[57]  Rudolf Lide,et al.  Finite fields , 1983 .

[58]  L. Schrage,et al.  A guide to simulation , 1983 .

[59]  I. D. Hill,et al.  An Efficient and Portable Pseudo‐Random Number Generator , 1982 .

[60]  H. Faure Discrépance de suites associées à un système de numération (en dimension s) , 1982 .

[61]  I. D. Hill,et al.  Correction: Algorithm AS 183: An Efficient and Portable Pseudo-Random Number Generator , 1982 .

[62]  Scott Kirkpatrick,et al.  A very fast shift-register sequence random number generatorjournal of computational physics , 1981 .

[63]  H. Keng,et al.  Applications of number theory to numerical analysis , 1981 .

[64]  Donald E. Knuth,et al.  The art of computer programming. Vol.2: Seminumerical algorithms , 1981 .

[65]  B. B. Pokhodzei,et al.  Pseudo-random numbers generated by linear recurrence relations over a finite field☆ , 1979 .

[66]  H. Niederreiter Quasi-Monte Carlo methods and pseudo-random numbers , 1978 .

[67]  Dimitris G. Maritsas,et al.  Partitioning the Period of a Class of m-Sequences and Application to Pseudorandom Number Generation , 1978, JACM.

[68]  H. Niederreiter Pseudo-random numbers and optimal coefficients☆ , 1977 .

[69]  Lauwerens Kuipers,et al.  Uniform distribution of sequences , 1974 .

[70]  Ted G. Lewis,et al.  Generalized Feedback Shift Register Pseudorandom Number Algorithm , 1973, JACM.

[71]  G. Marsaglia The Structure of Linear Congruential Sequences , 1972 .

[72]  W. Schmidt On irregularities of distribution vii , 1972 .

[73]  Donald Ervin Knuth,et al.  The Art of Computer Programming , 1968 .

[74]  I. Sobol On the distribution of points in a cube and the approximate evaluation of integrals , 1967 .

[75]  R. Tausworthe Random Numbers Generated by Linear Recurrence Modulo Two , 1965 .

[76]  E. Hlawka Funktionen von beschränkter Variatiou in der Theorie der Gleichverteilung , 1961 .

[77]  J. Kiefer On large deviations of the empiric D. F. of vector chance variables and a law of the iterated logarithm. , 1961 .

[78]  J. Halton On the efficiency of certain quasi-random sequences of points in evaluating multi-dimensional integrals , 1960 .

[79]  Wouter Peremans,et al.  Reduced sequences of integers and pseudo-random numbers , 1953 .