On bar recursive interpretations of analysis
暂无分享,去创建一个
[1] Frank Plumpton Ramsey,et al. On a Problem of Formal Logic , 1930 .
[2] Ernst Specker,et al. Nicht konstruktiv beweisbare Sätze der Analysis , 1949, Journal of Symbolic Logic.
[3] S. Kuroda. Intuitionistische Untersuchungen der formalistischen Logik , 1951, Nagoya Mathematical Journal.
[4] Georg Kreisel,et al. On the interpretation of non-finitist proofs—Part I , 1951, Journal of Symbolic Logic.
[5] Graham Higman,et al. Ordering by Divisibility in Abstract Algebras , 1952 .
[6] Von Kurt Gödel,et al. ÜBER EINE BISHER NOCH NICHT BENÜTZTE ERWEITERUNG DES FINITEN STANDPUNKTES , 1958 .
[7] J. Kruskal. Well-quasi-ordering, the Tree Theorem, and Vazsonyi’s conjecture , 1960 .
[8] C. Spector. Provably recursive functionals of analysis: a consistency proof of analysis by an extension of princ , 1962 .
[9] C. Nash-Williams. On well-quasi-ordering infinite trees , 1963, Mathematical Proceedings of the Cambridge Philosophical Society.
[10] Georg Kreisel,et al. Transfinite induction and bar induction of types zero and one, and the role of continuity in intuitionistic analysis , 1966, Journal of Symbolic Logic.
[11] W. A. Howard,et al. Functional interpretation of bar induction by bar recursion , 1968 .
[12] C. Parsons. On a Number Theoretic Choice Schema and its Relation to Induction , 1970 .
[13] W. Tait. Normal Form Theorem for Bar Recursive Functions of Finite Type , 1971 .
[14] Charles D. Parsons,et al. On n-quantifier induction , 1972, Journal of Symbolic Logic.
[15] H. Luckhardt. Extensional Gödel Functional Interpretation , 1973 .
[16] A. Troelstra. Metamathematical investigation of intuitionistic arithmetic and analysis , 1973 .
[17] R. Gandy,et al. Computable and recursively countable functions of higher type , 1977 .
[18] Y. Ershov. Model of Partial Continuous Functionals , 1977 .
[19] J. Paris,et al. ∑n-Collection Schemas in Arithmetic , 1978 .
[20] J. Hyland,et al. Filter spaces and continuous functionals , 1979 .
[21] D. Normann. The countable functionals , 1980 .
[22] William A. Howard,et al. Ordinal analysis of simple cases of bar recursion , 1981, Journal of Symbolic Logic.
[23] Marc Bezem,et al. Strong normalization of barrecursive terms without using infinite terms , 1985, Arch. Math. Log..
[24] Wilfried Sieg,et al. Fragments of arithmetic , 1985, Ann. Pure Appl. Log..
[25] Marc Bezem,et al. Strongly majorizable functionals of finite type: A model for barrecursion containing discontinuous functionals , 1985, Journal of Symbolic Logic.
[26] Jean-Claude Raoult,et al. Proving Open Properties by Induction , 1988, Inf. Process. Lett..
[27] Marc Bezem. Equivalence of bar recursors in the theory of functionals of finite type , 1988, Arch. Math. Log..
[28] G. Bellin. Ramsey Interpreted: A Parametric Version of Ramsey's Theorem , 1990 .
[29] Chetan R. Murthy. Extracting Constructive Content From Classical Proofs , 1990 .
[30] de Paiva,et al. The Dialectica categories , 1991 .
[31] Thierry Coquand,et al. Constructive Topology and Combinatorics , 1992, Constructivity in Computer Science.
[32] Bezem,et al. Ramsey's theorem and the pigeonhole principle in intuitionistic mathematics , 1993 .
[33] T. Coquand,et al. A proof of Higman's lemma by structural induction , 1993 .
[34] Alberto Marcone. On the logical strength of Nash-Williams' theorem on transfinite sequences , 1994, math/9408204.
[35] Thierry Coquand,et al. An Analysis of Ramsey's Theorem , 1994, Inf. Comput..
[36] Thierry Coquand,et al. A semantics of evidence for classical arithmetic , 1995, Journal of Symbolic Logic.
[37] Samuel R. Buss,et al. Chapter II - First-Order Proof Theory of Arithmetic , 1998 .
[38] Thierry Coquand,et al. On the computational content of the axiom of choice , 1994, The Journal of Symbolic Logic.
[39] Elias Tahhan-Bittar,et al. Ordinal Recursive Bounds for Higman's Theorem , 1998, Theor. Comput. Sci..
[40] Dag Normann,et al. The Continuous Functionals , 1999, Handbook of Computability Theory.
[41] Stephen G. Simpson,et al. Subsystems of second order arithmetic , 1999, Perspectives in mathematical logic.
[42] Ulrich Kohlenbach,et al. On the No-Counterexample Interpretation , 1997, Journal of Symbolic Logic.
[43] J. Avigad. Update Procedures and the 1-Consistency of Arithmetic , 2002, Math. Log. Q..
[44] M. Seisenberger. On the Constructive Content of Proofs , 2003 .
[45] Ulrich Berger. A computational interpretation of open induction , 2004, Proceedings of the 19th Annual IEEE Symposium on Logic in Computer Science, 2004..
[46] Paulo Oliva,et al. MODIFIED BAR RECURSION AND CLASSICAL DEPENDENT CHOICE , 2004 .
[47] Wim Veldman,et al. An intuitionistic proof of Kruskal’s theorem , 2004, Arch. Math. Log..
[48] Seisenberger Monika,et al. Applications of inductive definitions and choice principles to program synthesis , 2005 .
[49] Paulo Oliva,et al. Unifying Functional Interpretations , 2006, Notre Dame J. Formal Log..
[50] Ulrich Berger,et al. Modified bar recursion , 2006, Mathematical Structures in Computer Science.
[51] Paulo Oliva. Understanding and Using Spector's Bar Recursive Interpretation of Classical Analysis , 2006, CiE.
[52] Helmut Schwichtenberg. Dialectica interpretation of well-founded induction , 2008, Math. Log. Q..
[53] Ulrich Kohlenbach,et al. Applied Proof Theory - Proof Interpretations and their Use in Mathematics , 2008, Springer Monographs in Mathematics.
[54] Martín Hötzel Escardó,et al. Exhaustible Sets in Higher-type Computation , 2008, Log. Methods Comput. Sci..
[55] Ulrich Kohlenbach,et al. Ramsey's Theorem for Pairs and Provably Recursive Functions , 2009, Notre Dame J. Formal Log..
[56] H. Towsner,et al. LOCAL STABILITY OF ERGODIC AVERAGES , 2007, 0706.1512.
[57] Stefano Berardi,et al. Interactive Learning-Based Realizability for Heyting Arithmetic with EM1 , 2010, Log. Methods Comput. Sci..
[58] Martín Hötzel Escardó,et al. Computational Interpretations of Analysis via Products of Selection Functions , 2010, CiE.
[59] Martín Hötzel Escardó,et al. Selection functions, bar recursion and backward induction , 2010, Mathematical Structures in Computer Science.
[60] Federico Aschieri,et al. Learning, realizability and games in classical arithmetic , 2010, 1012.4992.
[61] Ulrich Kohlenbach,et al. On Tao's “finitary” infinite pigeonhole principle , 2010, The Journal of Symbolic Logic.
[62] Paulo Oliva,et al. Sequential games and optimal strategies , 2011, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[63] Federico Aschieri. Transfinite Update Procedures for Predicative Systems of Analysis , 2011, CSL.
[64] Philippe Schnoebelen,et al. Multiply-Recursive Upper Bounds with Higman's Lemma , 2011, ICALP.
[65] Martín Hötzel Escardó,et al. System T and the Product of Selection Functions , 2011, CSL.
[66] Paulo Oliva,et al. A Game-Theoretic Computational Interpretation of Proofs in Classical Analysis , 2012, ArXiv.
[67] P. Erdös,et al. Combinatorial Set Theory: Partition Relations for Cardinals , 2012 .
[68] Paulo Oliva,et al. On the Relation Between Various Negative Trans- lations , 2012 .
[69] A. Kreuzer. Proof mining and combinatorics : Program extraction for Ramsey's theorem for pairs , 2012 .
[70] Ulrich Kohlenbach,et al. Term extraction and Ramsey's theorem for pairs , 2012, The Journal of Symbolic Logic.
[71] U. Kohlenbach. A UNIFORM QUANTITATIVE FORM OF SEQUENTIAL WEAK COMPACTNESS AND BAILLON'S NONLINEAR ERGODIC THEOREM , 2012 .
[72] Thomas Powell,et al. Applying Gödel's Dialectica Interpretation to Obtain a Constructive Proof of Higman's Lemma , 2012, CL&C.
[73] Danko Ilik,et al. A Direct Constructive Proof of Open Induction on Cantor Space , 2012 .
[74] Ulrich Kohlenbach. Gödel functional interpretation and weak compactness , 2012, Ann. Pure Appl. Log..
[75] Paulo Oliva,et al. On Spector's bar recursion , 2012, Math. Log. Q..
[76] Thomas Powell,et al. The equivalence of bar recursion and open recursion , 2014, Ann. Pure Appl. Log..
[77] R. Gorenflo,et al. Multi-index Mittag-Leffler Functions , 2014 .
[78] Thomas Powell,et al. A constructive interpretation of Ramsey's theorem via the product of selection functions , 2015, Math. Struct. Comput. Sci..
[79] Martín Hötzel Escardó,et al. Bar Recursion and Products of Selection Functions , 2015, J. Symb. Log..