Modelling of biofilm growth and its influence on CO2 and water (two-phase) flow in porous media

Bacterial biofilms are groups of microbial cells attached to surfaces and to each other. Cells in a biofilm are protected from adverse external conditions. In natural environments, this attached mode of growth is more successful than the suspended mode, and a major portion of microbial activity takes place at surfaces. In porous media, biofilms are used as bioreactors (e.g, in wastewater treatment) and as biobarriers (e.g., in enhanced oil recovery). They are also used in the containment and degradation of contaminants in groundwater aquifers. It has been proposed that biofilms be used as biobarriers for the mitigation of carbon dioxide (CO2) leakage from a geological storage reservoir. The concentration of greenhouse gases -- particularly carbon dioxide (CO2) -- in the atmosphere has been on the rise in the past decades. One of the methods which have been proposed to help reduce anthropogenic CO2 emissions is the capture of CO2 from large, stationary point sources and storage in deep geological formations. The caprock is an impermeable geological layer which prevents the leakage of stored CO2, and its integrity is of utmost importance for storage security. As mentioned above, biofilms could be used as biobarriers which help prevent the leakage of CO2 through the caprock in injection well vicinity. Due to the high pressure build-up during injection, the caprock in the vicinity of the well is particularly at risk of fracturing. The biofilm could also protect well cement from corrosion by CO2-rich brine. The goal of this work is to develop and test a numerical model which is capable of simulating the development of a biofilm in a CO2 storage reservoir. This involves the description of the growth of the biofilm, flow and transport in the geological formation, and the interaction between the biofilm and the flow processes. Important processes which are accounted for in the model include the effect of biofilm growth on the permeability of the formation, the hazardous effect of supercritical CO2 on suspended and attached bacteria, attachment and detachment of biomass, and two-phase fluid flow processes. The partial differential equations which describe the system are discretised in space with a vertex-centered finite volume method, and an implicit Euler scheme is used for time discretisation. The model is tested by comparing simulation results to experimental data. In a test case simulation, the model predicts the extent of biomass accumulation near an injection well and its effect on the permeability of the formation. The simulations show that the biobarrier is only effective for a limited amount of time. Regular injection of nutrients would be necessary to sustain the biofilm. In future work, the model could be extended to account for the active precipitation of minerals by the biofilm which would lead to a more enduring barrier. The model also needs to be extended to account for more than one growth-limiting factor. This would allow for the simulation of injection strategies which aim at growing a biofilm at some distance from the injection well. Biofilme, die in einem porosen Medium wachsen, blockieren Poren und verandern dabei die Eigenschaften des porosen Mediums. Diese veranderten Eigenschaften werden bei der biologischen Filtration (z. B. bei der Abwasserbehandlung), bei der biologischen Altlastensanierung (z. B. fur die Erstellung hydraulischer Barrieren) und bei anderen Fragestellungen auf diesem Gebiet genutzt. Eine hydraulische Barriere biologischen Ursprungs konnte z. B. auch in einer geologischen Kohlendioxid-Lagerstatte eingesetzt werden, um das Entweichen von CO2 zu verhindern. CO2 ist das derzeit fur am Wichtigsten erachtete anthropogene Treibhausgas. Die globale Erderwarmung wird demnach sehr stark durch die in den letzten Jahrzehnten stattfindende Anreicherung von anthropogenen Treibhausgasen in der Atmosphare mitverursacht. Die Freisetzung von CO2 kann mit Hilfe effizienterer Technologien und alternativer Energiequellen reduziert werden. CO2-Emissionen konnen aber auch reduziert werden, indem man CO2 aus Kraftwerksabgasen abscheidet und in tiefen geologischen Formationen speichert. Bei den physikalischen Bedingungen, die in diesen unterirdischen Lagerstatten herrschen, liegt CO2 im uberkritischen Zustand vor, gekennzeichnet durch eine hohe Dichte und geringe Viskositat. Diese Lagerstatten enthalten oft salzhaltiges Wasser, das dichter ist als CO2. Eine moglichst undurchlassige geologische Deckschicht verhindert das Aufsteigen des leichteren CO2 an die Erdoberflache. Jedoch mussen, z. B. im Rahmen von Risikostudien, mogliche Storungen oder Risse in dieser Deckschicht betrachtet werden, die zu einem Entweichen des CO2 fuhren konnten. Die Deckschicht in der Nahe eines CO2-Injektionsbrunnens ist besonders gefahrdet. Der hohe Druckanstieg wahrend der ersten Injektionsphase, Zementkorrosion am Brunnen aufgrund des CO2-reichen Formationswassers und eventuelle Beschadigungen der Deckschicht wahrend der Erstellung des Bohrlochs sind als mogliche Ursachen fur gestorte Deckschichten zu nennen. Biobarrieren konnten verwendet werden, um solche Risiken zu minimieren, z. B. indem sie Risse in der Deckschicht abdichten oder den Bohrlochzement vor Korrosion schutzen. Eine Biobarriere kann aus einem Biofilm selbst bestehen, aber auch aus vom Biofilm begungstigten mineralischen Ablagerungen. Die vorliegende Arbeit behandelt im Wesentlichen die Entwicklung eines numerischen Modells, um die Anreicherung von mikrobieller Biomasse im Untergrund simulieren zu konnen. Das entwickelte Modell soll in der Lage sein, das Abdichten der beschadigten geologischen Deckschicht einer unterirdischen Kohlendioxid-Lagerstatte mit Hilfe von Biofilmen zu simulieren. Dafur mussen einerseits Stromungsprozesse und andererseits auch die mikrobielle Aktivitat sowie die Interaktion dieser Vorgange in porosen Medien richtig beschrieben werden. Die Anreicherung von Bakterien in einem porosen Medium beeinflusst die hydraulischen Eigenschaften des Mediums und als Folge davon auch die darin stattfindende Stromung. Im Gegenzug bestimmt die Stromung den Transport der mikrobiellen Nahrstoffe und damit auch die Verteilung mikrobieller Wachstumsraten. Dementsprechend ist die richtige Beschreibung der Wechselwirkung zwischen Stromung und mikrobiellen Prozessen eine wesentliche Herausforderung in der Modellbildung.

[1]  G. Hartmann Investigation of evapotranspiration concepts in hydrological modelling for climate change impact assessment , 2007 .

[2]  Rainer Helmig,et al.  A contribution to risk analysis for leakage through abandoned wells in geological CO2 storage , 2010 .

[3]  Hussam Sheta Simulation von Mehrphasenvorgängen in porösen Medien unter Einbeziehung von Hysterese-Effekten , 1999 .

[4]  P Vandevivere,et al.  Effect of bacterial extracellular polymers on the saturated hydraulic conductivity of sand columns , 1992, Applied and environmental microbiology.

[5]  John S. Selker,et al.  Considerations for modeling bacterial-induced changes in hydraulic properties of variably saturated porous media , 2002 .

[6]  Aleksandar Trifkovic,et al.  Multi-objective and risk-based modelling methodology for planning, design and operation of water supply systems , 2007 .

[7]  T. P. Clement,et al.  Macroscopic Models for Predicting Changes in Saturated Porous Media Properties Caused by Microbial Growth , 1996 .

[8]  Michel Quintard,et al.  Biofilms in porous media: Development of macroscopic transport equations via volume averaging with closure for local mass equilibrium conditions , 2009 .

[9]  Alfred B. Cunningham,et al.  Influence of Biofilm Accumulation on Porous Media Hydrodynamics , 1991 .

[10]  Fritz Stauffer,et al.  Transport of bacteria in unsaturated porous media , 1998 .

[11]  Nathalie Tufenkji,et al.  Correlation equation for predicting single-collector efficiency in physicochemical filtration in saturated porous media. , 2004, Environmental science & technology.

[12]  E Klumpp,et al.  Bacteria transport and deposition under unsaturated conditions: the role of the matrix grain size and the bacteria surface protein. , 2007, Journal of contaminant hydrology.

[13]  Rainer Helmig,et al.  Numerical simulation of non-isothermal multiphase multicomponent processes in porous media. 2. Applications for the injection of steam and air , 2002 .

[14]  S. Yates,et al.  Modeling colloid attachment, straining, and exclusion in saturated porous media. , 2003, Environmental science & technology.

[15]  I. Kopecki Calculational approach to FST-hemispheres for multiparametrical Benthos Habitat modelling , 2008 .

[16]  T. N. Stevenson,et al.  Fluid Mechanics , 2021, Nature.

[17]  M. V. van Loosdrecht,et al.  Mathematical modelling of biofilm structures , 2002, Antonie van Leeuwenhoek.

[18]  E. Bouwer,et al.  Biofilms in porous media , 2000 .

[19]  H. Rentz-Reichert,et al.  UG – A flexible software toolbox for solving partial differential equations , 1997 .

[20]  Bernd Huwe Deterministische und stochastische Ansätze zur Modellierung des Stickstoffhaushalts landwirtschaftlich genutzter Flächen auf unterschiedlichem Skalenniveau , 1992 .

[21]  D. Cullimore,et al.  Microbiology of Well Biofouling , 1999 .

[22]  M. V. Genuchten,et al.  A dual-porosity model for simulating the preferential movement of water and solutes in structured porous media , 1993 .

[23]  J. Selker,et al.  Coupled Microbial and Transport Processes in Soils , 2004 .

[24]  Z. Lewandowski Notes on biofilm porosity , 2000 .

[25]  George Jacoub Development of a 2-D Numerical Module for Particulate Contaminant Transport in Flood Retention Reservoirs and Impounded Rivers , 2004 .

[26]  A. Marx Einsatz gekoppelter Modelle und Wetterradar zur Abschätzung von Niederschlagsintensitäten und zur Abflussvorhersage , 2007 .

[27]  M. V. van Loosdrecht,et al.  Dynamics of biofilm detachment in biofilm airlift suspension reactors , 1995, Biotechnology and bioengineering.

[28]  J. Wimpenny,et al.  A unifying hypothesis for the structure of microbial biofilms based on cellular automaton models , 1997 .

[29]  Bacterial clogging of porous media: a new modelling approach , 1995 .

[30]  J W Costerton,et al.  How bacteria stick. , 1978, Scientific American.

[31]  K. Pruess Thermal Effects During CO2 Leakage from a Geologic Storage Reservoir , 2004 .

[32]  J. Bryers Biofilms II : process analysis and applications , 2000 .

[33]  Saqib Ehsan Evaluation of life safety risks related to severe flooding , 2009 .

[34]  Rainer Helmig,et al.  Efficient fully-coupled solution techniques for two-phase flow in porous media: Parallel multigrid solution and large scale computations , 1999 .

[35]  J. Braun,et al.  Ressource Untergrund - 10 Jahre VEGAS: Forschung und Technologieentwicklung zum Schutz von Grundwasser und Boden , 2005 .

[36]  P. V. Van Geel,et al.  Conceptual Models and Simulations for Biological Clogging in Unsaturated Soils , 2007 .

[37]  M. Fischer Beanspruchung eingeerdeter Rohrleitungen infolge Austrocknung bindiger Böden , 2006 .

[38]  P. Laux Statistical modeling of precipitation for agricultural planning in the Volta Basin of West Africa , 2009 .

[39]  B. Peyton,et al.  A statistical analysis of the effect of substrate utilization and shear stress on the kinetics of biofilm detachment , 1993, Biotechnology and bioengineering.

[40]  R. Helmig Multiphase Flow and Transport Processes in the Subsurface: A Contribution to the Modeling of Hydrosystems , 2011 .

[41]  M. V. van Loosdrecht,et al.  Influence of interfaces on microbial activity. , 1990, Microbiological reviews.

[42]  M. Loosdrecht,et al.  Maintenance, endogeneous respiration, lysis, decay and predation , 1999 .

[43]  Z. Lewandowski,et al.  Liquid Flow in Biofilm Systems , 1994, Applied and environmental microbiology.

[44]  Stewart W. Taylor,et al.  Biofilm growth and the related changes in the physical properties of a porous medium: 1. Experimental investigation , 1990 .

[45]  Zhijing Wang,et al.  Seismic properties of pore fluids , 1992 .

[46]  J. Selker,et al.  Relationships between gas‐liquid interfacial surface area, liquid saturation, and light transmission in variably saturated porous media , 2002 .

[47]  E. Michaelides Thermodynamic properties of geothermal fluids , 1981 .

[48]  W. Nowak Geostatistical methods for the identification of flow and transport parameters in the subsurface , 2005 .

[49]  S. Prohaska Development and application of a 1D multi-strip fine sediment transport model for regulated rivers , 2009 .

[50]  P. Stewart,et al.  A model of biofilm detachment , 1993, Biotechnology and bioengineering.

[51]  G. Bodvarsson,et al.  Alternative concepts and approaches for modeling flow and transport in thick unsaturated zones of fractured rocks , 1999 .

[52]  Stefan Bachu,et al.  Semianalytical solution for CO2 leakage through an abandoned well. , 2005, Environmental science & technology.

[53]  T. K. Gurmessa Numerical investigation on flow and transport characteristics to improve long-term simulation of reservoir sedimentation , 2007 .

[54]  Ramkrishna Sen,et al.  Biotechnology in petroleum recovery: The microbial EOR , 2008 .

[55]  S. Patil Regionalization of an event based Nash cascade model for flood predictions in ungauged basins , 2008 .

[56]  Oscar Pozos Estrada Investigation on the effects of entrained air in pipelines , 2007 .

[57]  D. de Beer,et al.  Liquid flow in heterogeneous biofilms , 1994, Biotechnology and bioengineering.

[58]  Karsten Pruess,et al.  Reactive transport modeling of injection well scaling and acidizing at Tiwi field, Philippines , 2004 .

[59]  Rainer Helmig,et al.  Numerical simulation of biodegradation controlled by transverse mixing , 1999 .

[60]  F. Filiz Linking large scale meteorological conditions to floods in mesoscale catchments , 2005 .

[61]  R. H. Brooks,et al.  Hydraulic properties of porous media , 1963 .

[62]  Curtis M. Oldenburg,et al.  Screening and ranking framework for geologic CO2 storage site selection on the basis of health, safety, and environmental risk , 2008 .

[63]  M. Yavuz Corapcioglu,et al.  Transport and fate of microorganisms in porous media: A theoretical investigation , 1984 .

[64]  T. Miyazaki,et al.  A mathematical model for biological clogging of uniform porous media , 2001 .

[65]  K. Pruess Numerical studies of fluid leakage from a geologic disposal reservoir for CO{sub 2} show self-limiting feedback between fluid flow and heat transfer - article no. L14404 , 2005 .

[66]  Andreas Bielinski,et al.  Numerical simulation of CO2 sequestration in geological formations , 2007 .

[67]  Timothy R. Ginn,et al.  Modeling microbial processes in porous media , 2000 .

[68]  Rainer Helmig,et al.  An effective model for biofilm growth in a thin strip , 2009 .

[69]  Karsten Pruess,et al.  Numerical studies of fluid leakage from a geologic disposal reservoir for CO2 show self‐limiting feedback between fluid flow and heat transfer , 2005 .

[70]  M. Süß Analysis of the influence of structures and boundaries on flow and transport processes in fractured porous media , 2005 .

[71]  Karsten Pruess,et al.  A Physically Based Approach for Modeling Multiphase Fracture-Matrix Interaction in Fractured Porous Media , 2004 .

[72]  Rainer Helmig,et al.  CO2 leakage through an abandoned well: problem-oriented benchmarks , 2007 .

[73]  H. D. Stensel,et al.  Wastewater Engineering: Treatment and Reuse , 2002 .

[74]  Sabine Manthey Two-phase flow processes with dynamic effects in porous media - parameter estimation and simulation , 2006 .

[75]  J J Heijnen,et al.  Two-dimensional model of biofilm detachment caused by internal stress from liquid flow. , 2001, Biotechnology and bioengineering.

[76]  A. Porporato,et al.  Coupled moisture and microbial dynamics in unsaturated soils , 2007 .

[77]  H. Schwarz Die Grenztragfähigkeit des Baugrundes bei Einwirkung vertikal gezogener Ankerplatten als zweidimensionales Bruchproblem , 1969 .

[78]  Charles J. Newell,et al.  Natural Attenuation of Fuels and Chlorinated Solvents in the Subsurface , 1999 .

[79]  Peter Dietrich,et al.  Flow and transport in fractured porous media , 2005 .

[80]  A. Papafotiou Numerical investigations of the role of hysteresis in heterogeneous two-phase flow systems , 2008 .

[81]  Stewart W. Taylor,et al.  Substrate and biomass transport in a porous medium , 1990 .

[82]  Yi He,et al.  Application of a non-parametric classification scheme to catchment hydrology , 2008 .

[83]  Kenichiro Kobayashi,et al.  Optimization methods for multiphase systems in the subsurface : application to methane migration in coal mining areas , 2005 .

[84]  Tian C. Zhang,et al.  Density, porosity, and pore structure of biofilms , 1994 .

[85]  W. Wakeham,et al.  The Viscosity of Carbon Dioxide , 1998 .

[86]  Stefan Lang Parallele numerische Simulation instationärer Probleme mit adaptiven Methoden auf unstrukturierten Gittern , 2001 .

[87]  Alfred B. Cunningham,et al.  Biofilm enhanced geologic sequestration of supercritical CO2 , 2009 .

[88]  Michel Quintard,et al.  Calculation of effective diffusivities for biofilms and tissues , 2002, Biotechnology and bioengineering.

[89]  Holger Class Theorie und numerische Modellierung nichtisothermer Mehrphasenprozesse in NAPL-kontaminierten porösen Medien , 2001 .

[90]  The impact of spatial variability of precipitation on the predictive uncertainty of hydrological models , 2006 .

[91]  B. Rittman,et al.  The effect of shear stress on biofilm loss rate. , 1982, Biotechnology and bioengineering.

[92]  Siegfried Gurr Beitrag zur Berechnung zusammengesetzter ebener Flächentragwerke : unter besonderer Berücksichtigung ebener Stauwände, mit Hilfe von Randwert- und Lastwertmatrizen , 1964 .

[93]  S. Ochs Steam injection into saturated porous media : process analysis including experimental and numerical investigations , 2007 .

[94]  Beau J. Freeman Modernization criteria assessment for water resources planning; Klamath Irrigation Project, U.S. , 2008 .

[95]  Philip S. Stewart,et al.  A Three-Dimensional Computer Model of Four Hypothetical Mechanisms Protecting Biofilms from Antimicrobials , 2006, Applied and Environmental Microbiology.

[96]  Omar Khalil Ouda Optimisation of Agricultural Water Use: A Decision Support System for the Gaza Strip Von der Fakultät Bau-und Umweltingenieurwissenschaften der Universität Stuttgart zur Erlangung der Würde eines Doktor- Ingenieurs (Dr.-Ing) genehmigte Abhandlung , 2003 .

[97]  T. Dreher Selektive Sedimentation von Feinstschwebstoffen in Wechselwirkung mit wandnahen turbulenten Strömungsbedingungen , 2005 .

[98]  Mamata Mukhopadhyay,et al.  Extraction and processing with supercritical fluids , 2009 .

[99]  S. Wagner,et al.  Water balance in a poorly gauged basin in West Africa using atmospheric modelling and remote sensing information , 2008 .

[100]  Alfred B. Cunningham,et al.  Microbially enhanced geologic containment of sequestered supercritical CO2 , 2009 .

[101]  M. Hamilton,et al.  Resilience of planktonic and biofilm cultures to supercritical CO2 , 2008 .

[102]  A. Corey Mechanics of Immiscible Fluids in Porous Media , 1986 .

[103]  Stewart W. Taylor,et al.  Biofilm growth and the related changes in the physical properties of a porous medium: 2. Permeability , 1990 .

[104]  W. Wagner,et al.  A New Equation of State for Carbon Dioxide Covering the Fluid Region from the Triple‐Point Temperature to 1100 K at Pressures up to 800 MPa , 1996 .

[105]  Bruce E. Rittmann,et al.  The significance of biofilms in porous media , 1993 .

[106]  R. Wege Untersuchungs- und Überwachungsmethoden für die Beurteilung natürlicher Selbstreinigungsprozesse im Grundwasser , 2005 .

[107]  Minghao Qin Wirklichkeitsnahe und recheneffiziente Ermittlung von Temperatur und Spannungen bei großen RCC-Staumauern , 2005 .

[108]  Jens Wolf Räumlich differenzierte Modellierung der Grundwasserströmung alluvialer Aquifere für mesoskalige Einzugsgebiete , 2006 .

[109]  L. Samaniego-Eguiguren Hydrological consequences of land use/land cover and climatic changes in mesoscale catchments , 2003 .

[110]  M. J. Drews,et al.  Sterilization using high-pressure carbon dioxide , 2006 .

[111]  Jens Götzinger Distributed conceptual hydrological modelling - simulation of climate, land use change impact and uncertainty analysis , 2007 .

[112]  Wei Yang Discrete-continuous downscaling model for generating daily precipitation time series , 2008 .

[113]  Wolfgang Kinzelbach,et al.  Influence of Microbial Growth on Hydraulic Properties of Pore Networks , 2002, Groundwater 2000.

[114]  J. Cary Estimating the surface area of fluid phase interfaces in porous media , 1994 .

[115]  Gerald E. Speitel,et al.  Biofilm Shearing under Dynamic Conditions , 1987 .

[116]  Philippe Baveye,et al.  Computational pore network modeling of the influence of biofilm permeability on bioclogging in porous media , 2008, Biotechnology and bioengineering.

[117]  P. Stewart,et al.  A review of experimental measurements of effective diffusive permeabilities and effective diffusion coefficients in biofilms , 1998, Biotechnology and bioengineering.

[118]  J. Bear Dynamics of Fluids in Porous Media , 1975 .

[119]  B. Peyton,et al.  Modeling Bacterial Transport and Accumulation Processes in Saturated Porous Media: A Review , 2002 .

[120]  Surabhin C. Jose Experimental investigations on longitudinal dispersive mixing in heterogeneous aquifers , 2005 .