The convex domination subdivision number of a graph

Let $G=(V,E)$ be a simple graph. A set $Dsubseteq V$ is adominating set of $G$ if every vertex in $Vsetminus D$ has atleast one neighbor in $D$. The distance $d_G(u,v)$ between twovertices $u$ and $v$ is the length of a shortest $(u,v)$-path in$G$. An $(u,v)$-path of length $d_G(u,v)$ is called an$(u,v)$-geodesic. A set $Xsubseteq V$ is convex in $G$ ifvertices from all $(a, b)$-geodesics belong to $X$ for any twovertices $a,bin X$. A set $X$ is a convex dominating set if it isconvex and dominating set. The {em convex domination number}$gamma_{rm con}(G)$ of a graph $G$ equals the minimumcardinality of a convex dominating set in $G$. {em The convexdomination subdivision number} sd$_{gamma_{rm con}}(G)$ is theminimum number of edges that must be subdivided (each edge in $G$can be subdivided at most once) in order to increase the convexdomination number. In this paper we initiate the study of convexdomination subdivision number and we establish upper bounds forit.

[1]  S. M. Sheikholeslami,et al.  DOUBLY CONNECTED DOMINATION SUBDIVISION NUMBERS OF GRAPHS , 2012 .

[2]  Seyed Mahmoud Sheikholeslami,et al.  New Bounds on the Rainbow Domination Subdivision Number , 2014 .

[3]  Joanna Raczek NP-completeness of weakly convex and convex dominating set decision problems , 2004 .

[4]  Joanna Cyman,et al.  Graphs with convex domination number close to their order , 2006, Discuss. Math. Graph Theory.

[5]  Seyed Mahmoud Sheikholeslami,et al.  On the rainbow domination subdivision numbers in graphs , 2016 .

[6]  Magdalena Lemańska Weakly convex and convex domination numbers , 2004 .

[7]  Michael A. Henning,et al.  Total domination subdivision numbers of graphs , 2004, Discuss. Math. Graph Theory.

[8]  Seyed Mahmoud Sheikholeslami,et al.  Weakly convex domination subdivision number of a graph , 2016 .

[9]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[10]  S. M. Sheikholeslami,et al.  2-domination subdivision number of graphs , 2012 .

[11]  Seyed Mahmoud Sheikholeslami,et al.  Domination subdivision numbers of trees , 2009, Discret. Math..

[12]  Teresa W. Haynes,et al.  Domination Subdivision Numbers , 2001, Discuss. Math. Graph Theory.

[13]  Seyed Mahmoud Sheikholeslami,et al.  Roman domination subdivision number of graphs , 2009 .

[14]  Peter J. Slater,et al.  Fundamentals of domination in graphs , 1998, Pure and applied mathematics.

[15]  P Titus,et al.  Studies in graph theory , 2007 .

[16]  Magdalena Lemanska Nordhaus-Gaddum results for weakly convex domination number of a graph , 2010, Discuss. Math. Graph Theory.

[17]  Magdalena Lemanska,et al.  Influence of edge subdivision on the convex domination number , 2012, Australas. J Comb..