Critical properties of the X-Y model near the lifshitz point

[1]  E. Abrahams,et al.  A possible lifshitz point for TTF-TCNQ☆ , 1977 .

[2]  A. Michelson Physical Realization of a Lifshitz Point in Liquid Crystals , 1977 .

[3]  Jean Zinn-Justin,et al.  Critical Exponents for the N Vector Model in Three-Dimensions from Field Theory , 1977 .

[4]  A. Michelson Phase diagrams near the Lifshiftz point. II. Systems with cylindrical, hexagonal, and rhombohedral symmetry having an easy plane of magnetization , 1977 .

[5]  M. Achard,et al.  An experimental system for a nematic-smectic A-smectic C Lifshitz's point , 1977 .

[6]  T. Lubensky,et al.  Landau-Ginzburg mean-field theory for the nematic to smectic-C and nematic to smectic-A phase transitions , 1976 .

[7]  H. Stanley,et al.  Renormalization group calculation for critical points of higher order with general propagator , 1976 .

[8]  D. Landau,et al.  Finite-size behavior of the simple-cubic Ising lattice , 1976 .

[9]  Kurt Binder,et al.  Critical properties of the two-dimensional anisotropic Heisenberg model , 1976 .

[10]  S. Shtrikman,et al.  Critical Behavior at the Onset of k --> -Space Instability on the lamda Line , 1975 .

[11]  D. Jasnow,et al.  Crossover scaling function for exchange anisotropy: Heisenberg to XY -like crossover , 1975 .

[12]  D. Jasnow,et al.  Crossover scaling functions for exchange anisotropy: X Y and planar models , 1975 .

[13]  M. Fisher,et al.  Crossover scaling functions for exchange anisotropy , 1974 .

[14]  H. Rauch,et al.  Numerische Berechnung von Spin-Korrelationsfunktionen und Magnetisierungskurven von Ferromagnetica , 1969 .