The shear mode of multi-layer graphene

We uncover the interlayer shear mode of multi-layer graphene samples, ranging from bilayer-graphene (BLG) to bulk graphite, and show that the corresponding Raman peak measures the interlayer coupling. This peak scales from ∼ 43cm − 1 in bulk graphite to ∼ 31cm − 1 in BLG. Its low energy makes it a probe of near-Dirac point quasi-particles, with a Breit-Wigner-Fano lineshape due to resonance with electronic transitions. Similar shear modes are expected in all layered materials, providing a direct probe of interlayer interactions.

[1]  Takashi Taniguchi,et al.  Quantum Hall effect and Landau-level crossing of Dirac fermions in trilayer graphene , 2011, 1104.0438.

[2]  A. Ferrari,et al.  Intercalation of few-layer graphite flakes with FeCl3: Raman determination of Fermi level, layer by layer decoupling, and stability. , 2011, Journal of the American Chemical Society.

[3]  J. Coleman,et al.  Two-Dimensional Nanosheets Produced by Liquid Exfoliation of Layered Materials , 2011, Science.

[4]  P. Klimov,et al.  Imaging stacking order in few-layer graphene. , 2010, Nano letters.

[5]  A. Morpurgo,et al.  Accessing the transport properties of graphene and its multilayers at high carrier density , 2010, Proceedings of the National Academy of Sciences.

[6]  J F Dobson,et al.  Cohesive properties and asymptotics of the dispersion interaction in graphite by the random phase approximation. , 2010, Physical review letters.

[7]  Kwang S. Kim,et al.  Roll-to-roll production of 30-inch graphene films for transparent electrodes. , 2010, Nature nanotechnology.

[8]  A. Ferrari,et al.  Graphene Photonics and Optoelectroncs , 2010, CLEO 2012.

[9]  Steven G. Louie,et al.  EPW: A program for calculating the electron-phonon coupling using maximally localized Wannier functions , 2010, Comput. Phys. Commun..

[10]  P. Avouris,et al.  Carrier scattering, mobilities, and electrostatic potential in monolayer, bilayer, and trilayer graphene , 2009, 0908.0749.

[11]  T. Ando,et al.  Electronic structures and optical absorption of multilayer graphenes , 2009 .

[12]  N. Peres,et al.  Fine Structure Constant Defines Visual Transparency of Graphene , 2008, Science.

[13]  K. Novoselov,et al.  Raman Fingerprint of Charged Impurities in Graphene , 2007, 0709.2566.

[14]  S. Latil,et al.  Massless fermions in multilayer graphitic systems with misoriented layers: Ab initio calculations an , 2007, 0709.2315.

[15]  Nicola Marzari,et al.  Phonon anharmonicities in graphite and graphene. , 2007, Physical review letters.

[16]  A. Ferrari,et al.  Raman spectroscopy of graphene and graphite: Disorder, electron phonon coupling, doping and nonadiabatic effects , 2007 .

[17]  K. Novoselov,et al.  Rayleigh imaging of graphene and graphene layers. , 2007, Nano letters.

[18]  A. Neto,et al.  Making graphene visible , 2007, Applied Physics Letters.

[19]  J. Maultzsch,et al.  Elasticity of single-crystalline graphite: Inelastic x-ray scattering study , 2007 .

[20]  P. Hyldgaard,et al.  Van der Waals density functional: Self-consistent potential and the nature of the van der Waals bond , 2007, cond-mat/0703442.

[21]  K. Novoselov,et al.  Breakdown of the adiabatic Born-Oppenheimer approximation in graphene. , 2007, Nature materials.

[22]  Andre K. Geim,et al.  The rise of graphene. , 2007, Nature materials.

[23]  F. Guinea,et al.  Biased bilayer graphene: semiconductor with a gap tunable by the electric field effect. , 2006, Physical review letters.

[24]  Andre K. Geim,et al.  Raman spectrum of graphene and graphene layers. , 2006, Physical review letters.

[25]  Phonon linewidths and electron-phonon coupling in graphite and nanotubes , 2005, cond-mat/0508700.

[26]  Nicola Marzari,et al.  First-principles determination of the structural, vibrational and thermodynamic properties of diamond, graphite, and derivatives , 2004, cond-mat/0412643.

[27]  J. Robertson,et al.  Preface to 'Raman spectroscopy in carbons: from nanotubes to diamond' , 2004 .

[28]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[29]  Andreas Savin,et al.  Long-range/short-range separation of the electron-electron interaction in density functional theory , 2004 .

[30]  Ping-Heng Tan,et al.  TEMPERATURE-DEPENDENT RAMAN SPECTRA AND ANOMALOUS RAMAN PHENOMENON OF HIGHLY ORIENTED PYROLYTIC GRAPHITE , 1998 .

[31]  K. Kreher,et al.  Fundamentals of Semiconductors – Physics and Materials Properties , 1997 .

[32]  Sinha,et al.  First- and second-order resonant Raman scattering in graphite. , 1990, Physical review. B, Condensed matter.

[33]  Syassen,et al.  Graphite under pressure: Equation of state and first-order Raman modes. , 1989, Physical review. B, Condensed matter.

[34]  M. Grimsditch Shear elastic modulus of graphite , 1983 .

[35]  M. Dresselhaus,et al.  Light scattering in graphite intercalation compounds , 1982 .

[36]  E. Kane,et al.  Intraband Raman scattering by free carriers in heavily doped n-Si , 1977 .

[37]  G. Lucovsky,et al.  Infrared active optical vibrations of graphite , 1977 .

[38]  K. Mani,et al.  Lattice Dynamics of Graphite , 1974, February 1.