Long-term behavior and intra-individual stability of the direct current electroretinogram and of the standing potential in the albino rabbit eye

[1]  Eberhart Zrenner,et al.  Standard for clinical electroretinography (1994 update) , 2005, Documenta Ophthalmologica.

[2]  O. Textorius,et al.  The c-wave of the direct-current electroretinogram and the standing potential of the albino rabbit eye in response to repeated series of light stimuli with different interstimulus intervals , 2005, Documenta Ophthalmologica.

[3]  Sheldon S. Miller,et al.  Passive ionic properties of frog retinal pigment epithelium , 1977, The Journal of Membrane Biology.

[4]  Eberhart Zrenner,et al.  Standard for clinical electroretinography , 1989, Documenta Ophthalmologica.

[5]  Sven Erik G. Nilsson,et al.  Corneal D.C. recordings of slow ocular potential changes such as the ERG c-wave and the light peak in clinical work , 1988, Documenta Ophthalmologica.

[6]  O. Textorius,et al.  The c-wave of the direct-current-recorded electroretinogram and the standing potential of the albino rabbit eye in response to repeated series of light stimuli of different intensities , 2004, Documenta Ophthalmologica.

[7]  C. Karwoski,et al.  Current source density analysis of retinal field potentials. II. Pharmacological analysis of the b-wave and M-wave. , 1994, Journal of neurophysiology.

[8]  C. Karwoski,et al.  Current source density (CSD) analysis of retinal field potentials. I. Methodological considerations and depth profiles. , 1994, Journal of neurophysiology.

[9]  P. Sieving,et al.  A proximal retinal component in the primate photopic ERG a-wave. , 1994, Investigative ophthalmology & visual science.

[10]  N. Wioland,et al.  Light and dark induced variations of the c-wave voltage of the chicken eye after treatment with sodium aspartate , 1991, Vision Research.

[11]  G. Fishman,et al.  Visual adaptation and the cone flicker electroretinogram. , 1991, Investigative ophthalmology & visual science.

[12]  P. Gouras,et al.  Growth in amplitude of the human cone electroretinogram with light adaptation. , 1989, Investigative ophthalmology & visual science.

[13]  R. Miller,et al.  Extracellular K+ activity changes related to electroretinogram components. I. Amphibian (I-type) retinas , 1985, The Journal of general physiology.

[14]  S. Bloomfield,et al.  Extracellular K+ activity changes related to electroretinogram components. II. Rabbit (E-type) retinas , 1985, The Journal of general physiology.

[15]  Robert A. Linsenmeier,et al.  Chapter 2 Retinal pigment epithelial cell contributions to the electroretinogram and electrooculogram , 1985 .

[16]  R. Linsenmeier,et al.  A light-evoked interaction of apical and basal membranes of retinal pigment epithelium: c-wave and light peak. , 1983, Journal of neurophysiology.

[17]  R. Linsenmeier,et al.  Variations of c-Wave Amplitude in the Cat Eye , 1983 .

[18]  R. H. Steinberg,et al.  Origin of the light peak: in vitro study of Gekko gekko , 1982, The Journal of physiology.

[19]  C. Karwoski,et al.  Spatio-temporal variables in the relationship of neuronal activity to potassium and glial responses , 1981, Vision Research.

[20]  M. Marmor,et al.  Similarities between the c-wave and slow PIII in the rabbit eye. , 1980, Investigative ophthalmology & visual science.

[21]  E. Newman,et al.  Current source-density analysis of the b-wave of frog retina. , 1980, Journal of neurophysiology.

[22]  E. Newman B-wave currents in the frog retina , 1979, Vision Research.

[23]  Robert F. Miller,et al.  Light-evoked potassium activity in mudpuppy retina: its relationship to the b-wave of the electroretinogram , 1978, Brain Research.

[24]  B. Oakley Potassium and the photoreceptor-dependent pigment epithelial hyperpolarization , 1977, The Journal of general physiology.

[25]  R. H. Steinberg,et al.  The in vitro frog pigment epithelial cell hyperpolarization in response to light. , 1977, Investigative ophthalmology & visual science.

[26]  L. Proenza,et al.  Relationship between Müller cell responses, a local transretinal potential, and potassium flux. , 1977, Journal of neurophysiology.

[27]  D. G. Green,et al.  Correlation of light-induced changes in retinal extracellular potassium concentration with c-wave of the electroretinogram. , 1976, Journal of neurophysiology.

[28]  S. Nilsson,et al.  COVARIATION OF THE SIMULTANEOUSLY RECORDED c‐WAVE AND STANDING POTENTIAL OF THE HUMAN EYE , 1975, Acta ophthalmologica.

[29]  F. Dudek,et al.  Slow PIII component of the carp electroretinogram , 1975, The Journal of general physiology.

[30]  S. Nilsson,et al.  THE c‐WAVE OF THE HUMAN D.C. REGISTERED ERG. I. A QUANTITATIVE STUDY OF THE RELATIONSHIP BETWEEN c‐WAVE AMPLITUDE AND STIMULUS INTENSITY , 1974, Acta ophthalmologica.

[31]  B. Knave,et al.  The effect of barbiturate on retinal functions. II. Effects on the C-wave of the electroretinogram and the standing potential of the sheep eye. , 1974, Acta physiologica Scandinavica.

[32]  B. Knave,et al.  A COMPARATIVE STUDY ON THE EFFECTS OF BARBITURATE AND ETHYL ALCOHOL ON RETINAL FUNCTIONS WITH SPECIAL REFERENCE TO THE C‐WAVE OF THE ELECTRORETINOGRAM AND THE STANDING POTENTIAL OF THE SHEEP EYE , 1974, Acta ophthalmologica.

[33]  K. Brown,et al.  Intracellular Responses to Light from Cat Pigment Epithelium: Origin of the Electroretinogram c-Wave , 1970, Nature.

[34]  J. Dowling,et al.  Intracellular responses of the Müller (glial) cells of mudpuppy retina: their relation to b-wave of the electroretinogram. , 1970, Journal of neurophysiology.

[35]  W. A. Hagins,et al.  Signal Transmission along Retinal Rods and the Origin of the Electroretinographic a-Wave , 1969, Nature.

[36]  K. Brown,et al.  The electroretinogram: its components and their origins. , 1968, UCLA forum in medical sciences.

[37]  K. Brown,et al.  Rod Receptor Potential from the Retina of the Night Monkey , 1962, Nature.

[38]  K. Brown,et al.  Isolation and Identification of a Receptor Potential from the Pure Cone Fovea of the Monkey Retina , 1962, Nature.

[39]  T. Wiesel,et al.  Localization of origins of electroretinogram components by intraretinal recording in the intact cat eye , 1961, The Journal of physiology.

[40]  V. Elenius Recovery in the dark of the rabbit's electroretinogram in relation to intensity, duration and colour of light-adaptation. , 1958, Acta physiologica Scandinavica. Supplementum.