Mapping Forest Height from TanDEM-X Interferometric Coherence Data in Northwest Territories, Canada

Abstract In this paper, we demonstrate the feasibility of using TanDEM-X (TX) interferometric coherence data for mapping forest height with 25-m pixels across a study area near Fort Simpson, Northwest Territories (NWT), Canada. Our simplified RVOG model locally estimates forest height by combining an optimized estimation of TX interferometric coherence amplitude with the 20-m resolution Canadian Digital Elevation Model (CDEM) accounting for local slope variations. The initial map of TX height estimates provided R2 values of 0.78 and 0.88, mean errors (ME) of 1.66 m and 1.90 m, and root-mean-square errors (RMSE) of 2.7 m and 2.9 m when compared to independent height estimates derived from field plots and airborne LiDAR, respectively. We corrected the bias of TX height estimates using two variants of a LiDAR-based linear model. An application of three cover-specific linear adjustments provided the final TX height map with absolute ME ≤0.05 m and RMSE ≤2.09 m. The approach was tailored to poorly inventoried northern boreal regions through the use of archived TX data, the CDEM, a land cover map and airborne LiDAR transects. Our encouraging results support the perspective of wall-to-wall mapping of forest height across northern boreal forests in the NWT and beyond.

[1]  Michael A. Wulder,et al.  Developing 5 m resolution canopy height and digital terrain models from WorldView and ArcticDEM data , 2018, Remote Sensing of Environment.

[2]  Hao Chen,et al.  Radar Forest Height Estimation in Mountainous Terrain Using Tandem-X Coherence Data , 2018, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[3]  C. Miller,et al.  ABoVE: Directory of Field Sites Associated with 2017 ABoVE Airborne Campaign , 2018 .

[4]  Qi Chen,et al.  A Forest Attribute Mapping Framework: A Pilot Study in a Northern Boreal Forest, Northwest Territories, Canada , 2018, Remote. Sens..

[5]  Joanne C. White,et al.  Large-area mapping of Canadian boreal forest cover, height, biomass and other structural attributes using Landsat composites and lidar plots , 2018 .

[6]  Lars M. H. Ulander,et al.  Experiences from Large-Scale Forest Mapping of Sweden Using TanDEM-X Data , 2017, Remote. Sens..

[7]  Johan E. S. Fransson,et al.  Comparison between TanDEM-X- and ALS-based estimation of aboveground biomass and tree height in boreal forests , 2017 .

[8]  B. St-Onge,et al.  Effects of TanDEM-X Acquisition Parameters on the Accuracy of Digital Surface Models of a Boreal Forest Canopy , 2017 .

[9]  Bingbo Gao,et al.  State-of-the-Art: DTM Generation Using Airborne LIDAR Data , 2017, Sensors.

[10]  Jaan Praks,et al.  Interferometric SAR Coherence Models for Characterization of Hemiboreal Forests Using TanDEM-X Data , 2016, Remote. Sens..

[11]  Hao Chen,et al.  Forest Canopy Height Estimation Using Tandem-X Coherence Data , 2016, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[12]  Irena Hajnsek,et al.  Large-Scale Biomass Classification in Boreal Forests With TanDEM-X Data , 2016, IEEE Transactions on Geoscience and Remote Sensing.

[13]  Hans Pretzsch,et al.  Prediction of stem volume in complex temperate forest stands using TanDEM-X SAR data , 2016 .

[14]  Oliver Sonnentag,et al.  Permafrost thaw and wildfire: Equally important drivers of boreal tree cover changes in the Taiga Plains, Canada , 2016 .

[15]  hya sree.M,et al.  Lidar Remote Sensing , 2015 .

[16]  Marwan Younis,et al.  Tandem-L: A Highly Innovative Bistatic SAR Mission for Global Observation of Dynamic Processes on the Earth's Surface , 2015, IEEE Geoscience and Remote Sensing Magazine.

[17]  Lars M. H. Ulander,et al.  Estimation of Forest Biomass From Two-Level Model Inversion of Single-Pass InSAR Data , 2015, IEEE Transactions on Geoscience and Remote Sensing.

[18]  Maurizio Santoro,et al.  On the Estimation of Boreal Forest Biomass From TanDEM-X Data Without Training Samples , 2015, IEEE Geoscience and Remote Sensing Letters.

[19]  G. Riegler,et al.  WORLDDEM – A NOVEL GLOBAL FOUNDATION LAYER , 2015 .

[20]  Irena Hajnsek,et al.  TanDEM-X Pol-InSAR Performance for Forest Height Estimation , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[21]  Joanne C. White,et al.  A best practices guide for generating forest inventory attributes from airborne laser scanning data using an area-based approach , 2013 .

[22]  Nicholas C. Coops,et al.  Investigating the agreement between global canopy height maps and airborne Lidar derived height estimates over Canada , 2013 .

[23]  Joanne C. White,et al.  Lidar sampling for large-area forest characterization: A review , 2012 .

[24]  A. Baccini,et al.  Mapping forest canopy height globally with spaceborne lidar , 2011 .

[25]  Andreas Huth,et al.  Towards ground-truthing of spaceborne estimates of above-ground life biomass and leaf area index in tropical rain forests , 2010 .

[26]  M. Lefsky A global forest canopy height map from the Moderate Resolution Imaging Spectroradiometer and the Geoscience Laser Altimeter System , 2010 .

[27]  Michael A. Wulder,et al.  Integration of GLAS and Landsat TM data for aboveground biomass estimation , 2010 .

[28]  S. Cloude Polarisation: Applications in Remote Sensing , 2009 .

[29]  Christian Thiel,et al.  Operational Large-Area Forest Monitoring in Siberia Using ALOS PALSAR Summer Intensities and Winter Coherence , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[30]  J. Paruelo,et al.  How to evaluate models : Observed vs. predicted or predicted vs. observed? , 2008 .

[31]  Gerhard Krieger,et al.  TanDEM-X: A Satellite Formation for High-Resolution SAR Interferometry , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[32]  W. Cohen,et al.  Estimates of forest canopy height and aboveground biomass using ICESat , 2005 .

[33]  R. Houghton,et al.  Aboveground Forest Biomass and the Global Carbon Balance , 2005 .

[34]  W. W. Carson,et al.  Accuracy of a high-resolution lidar terrain model under a conifer forest canopy , 2003 .

[35]  S. Cloude,et al.  Three-stage inversion process for polarimetric SAR interferometry , 2003 .

[36]  Christiane Schmullius,et al.  Large-scale mapping of boreal forest in Siberia , 2003 .

[37]  Konstantinos Papathanassiou,et al.  Single-baseline polarimetric SAR interferometry , 2001, IEEE Trans. Geosci. Remote. Sens..

[38]  R. Dubayah,et al.  Lidar Remote Sensing for Forestry , 2000, Journal of Forestry.

[39]  Juan M. Lopez-Sanchez,et al.  Indoor experiments on polarimetric SAR interferometry , 2000, IEEE Trans. Geosci. Remote. Sens..

[40]  Konstantinos P. Papathanassiou,et al.  Polarimetric SAR interferometry , 1998, IEEE Trans. Geosci. Remote. Sens..

[41]  S. Magnussen,et al.  Derivations of stand heights from airborne laser scanner data with canopy-based quantile estimators , 1998 .

[42]  M. Moghaddam,et al.  Vegetation characteristics and underlying topography from interferometric radar , 1996 .

[43]  M. Nilsson Estimation of tree heights and stand volume using an airborne lidar system , 1996 .

[44]  M. Philip,et al.  Measuring Trees and Forests , 1994 .

[45]  W. Tourtellotte,et al.  Interaction , 1988, The Coevolution.

[46]  André Beaudoin,et al.  Tracking forest attributes across Canada between 2001 and 2011 using a k nearest neighbors mapping approach applied to MODIS imagery , 2018 .

[47]  K. Cox,et al.  ENVIRONMENT AND NATURAL RESOURCES GOVERNMENT OF THE NORTHWEST TERRITORIES , 2012 .

[48]  T. Wilbanks,et al.  Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change , 2007 .