Methods for detecting functional classifications in neuroimaging data

Data‐driven statistical methods are useful for examining the spatial organization of human brain function. Cluster analysis is one approach that aims to identify spatial classifications of temporal brain activity profiles. Numerous clustering algorithms are available, and no one method is optimal for all areas of application because an algorithm's performance depends on specific characteristics of the data. K‐means and fuzzy clustering are popular for neuroimaging analyses, and select hierarchical procedures also appear in the literature. It is unclear which clustering methods perform best for neuroimaging data. We conduct a simulation study, based on PET neuroimaging data, to evaluate the performances of several clustering algorithms, including a new procedure that builds on the kth nearest neighbor method. We also examine three stopping rules that assist in determining the optimal number of clusters. Five hierarchical clustering algorithms perform best in our study, some of which are new to neuroimaging analyses, with Ward's and the beta‐flexible methods exhibiting the strongest performances. Furthermore, Ward's and the beta‐flexible methods yield the best performances for noisy data, and the popular K‐means and fuzzy clustering procedures also perform reasonably well. The stopping rules also exhibit good performances for the top five clustering algorithms, and the pseudo‐T2 and pseudo‐F stopping rules are superior for noisy data. Based on our simulations for both noisy and unscaled PET neuroimaging data, we recommend the combined use of the pseudo‐F or pseudo‐T2 stopping rule along with either Ward's or the beta‐flexible clustering algorithm. Hum Brain Mapp 23:109–119, 2004. © 2004 Wiley‐Liss, Inc.

[1]  L. Garey Brodmann's localisation in the cerebral cortex , 1999 .

[2]  J. MacQueen Some methods for classification and analysis of multivariate observations , 1967 .

[3]  A. Rukhin Bayes and Empirical Bayes Methods for Data Analysis , 1997 .

[4]  L. K. Hansen,et al.  Feature‐space clustering for fMRI meta‐analysis , 2001, Human brain mapping.

[5]  Richard O. Duda,et al.  Pattern classification and scene analysis , 1974, A Wiley-Interscience publication.

[6]  L. K. Hansen,et al.  On Clustering fMRI Time Series , 1999, NeuroImage.

[7]  R Baumgartner,et al.  A hierarchical clustering method for analyzing functional MR images. , 1999, Magnetic resonance imaging.

[8]  E. Smith Methods of Multivariate Analysis , 1997 .

[9]  G. N. Lance,et al.  A General Theory of Classificatory Sorting Strategies: 1. Hierarchical Systems , 1967, Comput. J..

[10]  Mohamed-Jalal Fadili,et al.  On the number of clusters and the fuzziness index for unsupervised FCA application to BOLD fMRI time series , 2001, Medical Image Anal..

[11]  G. N. Lance,et al.  A general theory of classificatory sorting strategies: II. Clustering systems , 1967, Comput. J..

[12]  André Hardy,et al.  An examination of procedures for determining the number of clusters in a data set , 1994 .

[13]  Rajesh Nandy,et al.  Cluster analysis of fMRI data using dendrogram sharpening , 2003, Human brain mapping.

[14]  Dietmar Cordes,et al.  Hierarchical clustering to measure connectivity in fMRI resting-state data. , 2002, Magnetic resonance imaging.

[15]  R Baumgartner,et al.  Comparison of two exploratory data analysis methods for fMRI: fuzzy clustering vs. principal component analysis. , 2000, Magnetic resonance imaging.

[16]  Ranjan Maitra,et al.  Estimating Precision in Functional Images , 1997 .

[17]  Michael Erb,et al.  Dynamical Cluster Analysis of Cortical fMRI Activation , 1999, NeuroImage.

[18]  Friedrich T. Sommer,et al.  Exploratory analysis and data modeling in functional neuroimaging , 2003 .

[19]  F. DuBois Bowman,et al.  Identifying spatial relationships in neural processing using a multiple classification approach , 2004, NeuroImage.

[20]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[21]  J. Bezdek,et al.  FCM: The fuzzy c-means clustering algorithm , 1984 .

[22]  Claus Svarer,et al.  Cluster analysis of activity‐time series in motor learning , 2002, Human brain mapping.

[23]  S. Ruan,et al.  A multistep Unsupervised Fuzzy Clustering Analysis of fMRI time series , 2000, Human brain mapping.

[24]  Tianzi Jiang,et al.  Multicontext fuzzy clustering for separation of brain tissues in magnetic resonance images , 2003, NeuroImage.

[25]  K. Brodmann Vergleichende Lokalisationslehre der Großhirnrinde : in ihren Prinzipien dargestellt auf Grund des Zellenbaues , 1985 .

[26]  T. Caliński,et al.  A dendrite method for cluster analysis , 1974 .

[27]  Chinatsu Aone,et al.  Fast and effective text mining using linear-time document clustering , 1999, KDD '99.

[28]  G. W. Milligan,et al.  An examination of procedures for determining the number of clusters in a data set , 1985 .

[29]  Connie M. Borror,et al.  Methods of Multivariate Analysis, 2nd Ed. , 2004 .

[30]  Warren S. Sarle,et al.  Cubic Clustering Criterion , 1983 .