The Polarity of GaN: a Critical Review

GaN, AlN and InGaN have a polar wurtzite structure and epitaxial films of these materials typically grow along the polar axis. Although the polarity of these nitrides has been studied by quite a number of techniques, many results in the literature are in conflict. In this paper an attempt is made to lay out a set of polarity assignments to provide a context for discussion of these results. A “standard framework” is proposed to correlate the disparate results, and the framework is used to draw general conclusions about the polarity of bulk crystals, VPE and MBE epitaxial films, and devices.

[1]  M. O'Keefe,et al.  INVERSION DOMAINS IN GAN GROWN ON SAPPHIRE , 1996 .

[2]  Shuji Nakamura,et al.  The Blue Laser Diode: GaN based Light Emitters and Lasers , 1997 .

[3]  J. Weyher,et al.  Chemical polishing of bulk and epitaxial GaN , 1997 .

[4]  H. Morkoç,et al.  Microwave performance of AlGaN/GaN inverted MODFET's , 1997, IEEE Electron Device Letters.

[5]  D. Greve,et al.  Reconstructions of the GaN\(0001̄\) Surface , 1997 .

[6]  James S. Speck,et al.  Nucleation layer evolution in metal‐organic chemical vapor deposition grown GaN , 1996 .

[7]  T. Moustakas,et al.  Operation of a compact electron cyclotron resonance source for the growth of gallium nitride by molecular beam epitaxy (ECR-MBE) , 1995 .

[8]  D. Greve,et al.  Determination of wurtzite GaN lattice polarity based on surface reconstruction , 1998 .

[9]  C. Tu,et al.  Growth of GaN by gas-source molecular beam epitaxy by ammonia and by plasma generated nitrogen radicals , 1996 .

[10]  W. C. Hughes,et al.  MBE growth and properties of GaN on GaN/SiC substrates , 1997 .

[11]  H. Asahi,et al.  High Quality GaN Growth on (0001) Sapphire by Ion-Removed Electron Cyclotron Resonance Molecular Beam Epitaxy and First Observation of (2×2) and (4×4) Reflection High Energy Electron Diffraction Patterns , 1996 .

[12]  N. Newman,et al.  Structural Defects in Heteroepitaxial and Homoepitaxial GaN , 1995 .

[13]  M. Arlery,et al.  Correlation between surface morphologies and crystallographic structures of GaN layers grown by MOCVD on sapphire , 1996 .

[14]  Isamu Akasaki,et al.  Quantum-Confined Stark Effect due to Piezoelectric Fields in GaInN Strained Quantum Wells , 1997 .

[15]  Krüger,et al.  Strain-related phenomena in GaN thin films. , 1996, Physical review. B, Condensed matter.

[16]  J. Zak,et al.  Surface morphology of as grown and annealed bulk GaN crystals , 1996 .

[17]  Y. Shiraki,et al.  Surface orientation dependence of growth rate of cubic GaN , 1994 .

[18]  C. T. Foxon,et al.  Growth of GaN films on (0 0 1) and (1 1 1) GaAs surfaces by a modified MBE method , 1996 .

[19]  S. Nakamura,et al.  Determination of the atomic structure of inversion domain boundaries in α-GaN by transmission electron microscopy , 1998 .

[20]  M. Khan,et al.  Deposition and surface characterization of high quality single crystal GaN layers , 1993 .

[21]  M. Seelmann-Eggebert,et al.  Polarity of (00.1) GaN epilayers grown on a (00.1) sapphire , 1997 .

[22]  P. Ruterana,et al.  Polarity of epitaxial layers and (1210)prismatic defects in GaN and AIN grown on the (0001)Si surface of 6H-SiC , 1997 .

[23]  P. Chow,et al.  III-N light emitting diodes fabricated using RF nitrogen gas source MBE , 1996 .

[24]  T. Sasaki,et al.  Substrate‐polarity dependence of metal‐organic vapor‐phase epitaxy‐grown GaN on SiC , 1988 .

[25]  M. Arlery,et al.  POLARITY DETERMINATION OF GAN FILMS BY ION CHANNELING AND CONVERGENT BEAM ELECTRON DIFFRACTION , 1996 .

[26]  S. Nakamura,et al.  Nanopipes and Inversion Domains in High-Quality GaN Epitaxial Layers , 1996 .

[27]  M. Shur,et al.  Piezoresistive effect in GaN–AlN–GaN structures , 1997 .

[28]  W. C. Hughes,et al.  Molecular beam epitaxy growth and properties of GaN, AlxGa1−xN, and AlN on GaN/SiC substrates , 1996 .

[29]  M. Razeghi,et al.  Metalorganic chemical vapor deposition of monocrystalline GaN thin films on β‐LiGaO2 substrates , 1996 .

[30]  Igal Brener,et al.  Growth of Ga-face and N-face GaN films using ZnO Substrates , 1996 .

[31]  D. Bour,et al.  Determination of lattice polarity for growth of GaN bulk single crystals and epitaxial layers , 1996 .

[32]  D. Wiesmann,et al.  ScAlMgO 4 : an Oxide Substrate for GaN Epitaxy , 1996 .

[33]  M. J. Suscavage,et al.  A Study of the Surface Morphological Features of the Polar Faces of ZnO by Atomic Force Microscopy (AFM) Methods and AlN Thin Films Deposited on ZnO Polar Faces by PLD , 1996 .

[34]  K. Wang,et al.  Epitaxial growth of cubic gan on (111) GaAs by metalorganic chemical vapor deposition , 1995 .

[35]  L. Romano,et al.  The influence of inversion domains on surface morphology in GaN grown by molecular beam epitaxy , 1997 .

[36]  D. C. Reynolds,et al.  High mobility AlGaN/GaN heterostructures grown by gas-source molecular beam epitaxy , 1998 .

[37]  J. Im,et al.  Reduction of oscillator strength due to piezoelectric fields in G a N / A l x Ga 1 − x N quantum wells , 1998 .

[38]  Joan M. Redwing,et al.  Piezoelectric charge densities in AlGaN/GaN HFETs , 1997 .

[39]  Northrup,et al.  Atomic arrangement at the AlN/SiC interface. , 1996, Physical review. B, Condensed matter.

[40]  L. Eastman,et al.  Direct demonstration of a misfit strain‐generated electric field in a [111] growth axis zinc‐blende heterostructure , 1990 .

[41]  M. Graef,et al.  Temperature‐mediated phase selection during growth of GaN on (111)A and (1̄1̄1̄)B GaAs substrates , 1995 .

[42]  James S. Speck,et al.  Influence of sapphire nitridation on properties of gallium nitride grown by metalorganic chemical vapor deposition , 1996 .

[43]  Kazumi Wada,et al.  Exciton localization in InGaN quantum well devices , 1998 .

[44]  D. Kisker,et al.  MOCVD growth of GaN films on lattice-matched oxide substrates , 1996 .

[45]  Ahn,et al.  Composition and structure of the GaN{0001-bar}-(1 x 1) surface. , 1996, Physical review. B, Condensed matter.

[46]  C. T. Foxon,et al.  Growth and Optical Properties of GaN Grown by MBE on Novel Lattice-Matched Oxide Substrates , 1995 .

[47]  Z. Liliental-Weber,et al.  Structural and Optical Properties of Homoepitaxial GaN Layers , 1996 .

[48]  Michael S. Shur,et al.  Piezoeffect and gate current in AlGaN/GaN high electron mobility transistors , 1997 .

[49]  P. Hacke,et al.  Monitoring surface stoichiometry with the (2×2) reconstruction during growth of hexagonal‐phase GaN by molecular beam epitaxy , 1996 .

[50]  H. Morkoç,et al.  Effect of buffer layer and substrate surface polarity on the growth by molecular beam epitaxy of GaN on ZnO , 1997 .

[51]  N. Newman,et al.  Thermodynamic and kinetic processes involved in the growth of epitaxial GaN thin films , 1993 .

[52]  Manijeh Razeghi,et al.  Thermal stability of GaN thin films grown on (0001) Al2O3, (011̄2) Al2O3 and (0001)Si 6H‐SiC substrates , 1994 .

[53]  David Vanderbilt,et al.  Spontaneous polarization and piezoelectric constants of III-V nitrides , 1997 .

[54]  A. Wickenden,et al.  Surface composition and structure of GaN epilayers on sapphire , 1997 .

[55]  M. Nardelli,et al.  THEORY OF SURFACE MORPHOLOGY OF WURTZITE GAN (0001) SURFACES , 1997 .

[56]  Northrup,et al.  Energetics of AlN thin films and the implications for epitaxial growth on SiC. , 1996, Physical review. B, Condensed matter.

[57]  W. C. Hughes,et al.  Molecular beam epitaxy growth and properties of GaN films on GaN/SiC substrates , 1995 .

[58]  Michael S. Shur,et al.  The influence of the strain‐induced electric field on the charge distribution in GaN‐AlN‐GaN structure , 1993 .

[59]  The influence of the deformation on the two-dimensional electron gas density in GaN–AlGaN heterostructures , 1998 .