Rotationally resolved gas-phase spectrum of the A 2Σ+–

[1]  B. McGuire 2021 Census of Interstellar, Circumstellar, Extragalactic, Protoplanetary Disk, and Exoplanetary Molecules , 2021, The Astrophysical Journal Supplement Series.

[2]  D. York,et al.  The Apache Point Observatory Catalog of Optical Diffuse Interstellar Bands , 2019, The Astrophysical Journal.

[3]  J. Maier,et al.  C 60 + IN DIFFUSE CLOUDS: LABORATORY AND ASTRONOMICAL COMPARISON , 2016 .

[4]  G. Walker,et al.  GAS PHASE ABSORPTION SPECTROSCOPY OF AND IN A CRYOGENIC ION TRAP: COMPARISON WITH ASTRONOMICAL MEASUREMENTS , 2016 .

[5]  G. Walker,et al.  IDENTIFICATION OF MORE INTERSTELLAR C 60 + ?> BANDS , 2015, 1509.06818.

[6]  J. Maier,et al.  Laboratory confirmation of C60+ as the carrier of two diffuse interstellar bands , 2015, Nature.

[7]  D. York,et al.  ANOMALOUS DIFFUSE INTERSTELLAR BANDS IN THE SPECTRUM OF HERSCHEL 36. II. ANALYSIS OF RADIATIVELY EXCITED CH+, CH, AND DIFFUSE INTERSTELLAR BANDS , 2013, 1304.2842.

[8]  B. McCall,et al.  On the discovery of the diffuse interstellar bands , 2013, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[9]  J. Maier,et al.  Gas phase detection of cyclic B3: 2(2)E' <-- X2A1' electronic origin band. , 2004, The Journal of chemical physics.

[10]  H. Linnartz,et al.  Cavity ring down spectroscopy on radicals in a supersonic slit nozzle discharge , 1999 .

[11]  J. Maier,et al.  The 2Π←X 2Π electronic spectra of C8H and C10H in the gas phase , 1998 .

[12]  Alexander Kai-man Leung,et al.  The X2 Pi and A2 sigma states of FCN+ and ClCN+ : ab initio calculations and simulation of the HeI photoelectron spectra of FCN and ClCN , 1998 .

[13]  L. Karlsson,et al.  The photoelectron spectrum of iodine cyanide, ICN , 1997 .

[14]  George H. Herbig,et al.  The Diffuse Interstellar Bands , 1995 .

[15]  F. Chau,et al.  Determination of geometries and molecular properties of XCN+ ions (where X is Cl, Br, I) through Franck—Condon analyses on the corresponding photoelectron spectra , 1993 .

[16]  M. Tsuji,et al.  Emission spectra of N2O+(Ã 2Σ+-X̃ 2Π), CS2+(Ã 2Πu-X̃ 2Πg) and ICN+(Ã 2Σ+-X̃ 2Π) excited by penning ionization in low-pressure neon and helium afterglows , 1988 .

[17]  B. Kovač High-resolution photoelectron spectra of cyanogen bromide and cyanogen iodide: vibronic mixing , 1987 .

[18]  M. A. King,et al.  Ã 2Σ+ → [Xtilde] 2Π i emission spectra of the supersonically cooled cations HCP+ and DCP+ , 1987 .

[19]  J. Maier,et al.  Emission spectra of supersonically cooled halocyanide cations, XCN+ (X = Cl, Br, I): ~A2.SIGMA.+ .fwdarw. ~B2.PI. and ~B2.PI. .fwdarw. ~X2.PI. band systems , 1985 .

[20]  S. Leutwyler,et al.  The electronic absorption spectra of ClCN+, BrCN+, and ICN+ in neon matrices , 1985 .

[21]  P. Luc Molecular constants and Dunham expansion parameters describing the B-X system of the iodine molecule , 1980 .

[22]  G. Bieri Cyanogen fluoride: A photoelectron-spectroscopic investigation , 1977 .

[23]  M. Allan,et al.  The ∏-states of tetraacetylene radical cation , 1976 .

[24]  J. Hollas,et al.  Geometry of cyanogen halide positive ions from photoelectron spectroscopy , 1971 .

[25]  M. Heger Further study of the sodium lines in class B stars , 1922 .