Predictive Navigation by Understanding Human Motion Patterns

To make robots coexist and share the environments with humans, robots should understand the behaviors or the intentions of humans and further predict their motions. In this paper, an A*-based predictive motion planner is represented for navigation tasks. A generalized pedestrian motion model is proposed and trained by the statistical learning method. To deal with the uncertainty, a localization, tracking and prediction framework is also introduced. The corresponding recursive Bayesian formula represented as DBNs (Dynamic Bayesian Networks) is derived for real time operation. Finally, the simulations and experiments are shown to validate the idea of this paper.

[1]  Sebastian Thrun,et al.  Anytime search in dynamic graphs , 2008, Artif. Intell..

[2]  Panos E. Trahanias,et al.  Real-time hierarchical POMDPs for autonomous robot navigation , 2007, Robotics Auton. Syst..

[3]  Honghai Liu,et al.  Navigation Technologies for Autonomous Underwater Vehicles , 2008, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews).

[4]  Eric A. Hansen,et al.  Anytime Heuristic Search , 2011, J. Artif. Intell. Res..

[5]  Panos E. Trahanias,et al.  Predictive autonomous robot navigation , 2002, IEEE/RSJ International Conference on Intelligent Robots and Systems.

[6]  Sven Koenig,et al.  Fast replanning for navigation in unknown terrain , 2005, IEEE Transactions on Robotics.

[7]  Alan R. Wagner Creating and using matrix representations of social interaction , 2009, 2009 4th ACM/IEEE International Conference on Human-Robot Interaction (HRI).

[8]  A. Oualid Djekoune,et al.  A Sensor Based Navigation Algorithm for a Mobile Robot using the DVFF Approach , 2009 .

[9]  Joelle Pineau,et al.  Point-based value iteration: An anytime algorithm for POMDPs , 2003, IJCAI.

[10]  Keigo Watanabe,et al.  Behavior Selection Based Navigation and Obstacle Avoidance Approach Using Visual and Ultrasonic Sensory Information for Quadruped Robots , 2008 .

[11]  Takayuki Kanda,et al.  How to approach humans?-strategies for social robots to initiate interaction , 2009, 2009 4th ACM/IEEE International Conference on Human-Robot Interaction (HRI).

[12]  Zhiqiang Cao,et al.  The Design and Implementation of a Biomimetic Robot Fish , 2008 .

[13]  Takayuki Kanda,et al.  Interactive Humanoid Robots for a Science Museum , 2007, IEEE Intell. Syst..

[14]  Ingrid Zukerman,et al.  Using interest and transition models to predict visitor locations in museums , 2008, AI Commun..

[15]  Takayuki Kanda,et al.  Abstracting People's Trajectories for Social Robots to Proactively Approach Customers , 2009, IEEE Transactions on Robotics.

[16]  Kyung Shik Roh,et al.  Vision-Based Obstacle Detection and Avoidance: Application to Robust Indoor Navigation of Mobile Robots , 2008, Adv. Robotics.

[17]  Hajime Aoyama,et al.  Development of Mine Detection Robot System , 2007 .

[18]  Rolf Dieter Schraft,et al.  Care-O-bot II—Development of a Next Generation Robotic Home Assistant , 2004, Auton. Robots.

[19]  Yasushi Nakauchi,et al.  A Social Robot that Stands in Line , 2002, Auton. Robots.

[20]  J. Burdick,et al.  Sensor based planning. I. The generalized Voronoi graph , 1995, Proceedings of 1995 IEEE International Conference on Robotics and Automation.

[21]  Han-Pang Huang,et al.  SLAMMOT-SP: Simultaneous SLAMMOT and Scene Prediction , 2010, Adv. Robotics.

[22]  Rachid Alami,et al.  A Human Aware Mobile Robot Motion Planner , 2007, IEEE Transactions on Robotics.

[23]  C. Cardeira,et al.  i-Merc: A Mobile Robot to Deliver Meals inside Health Services , 2006, 2006 IEEE Conference on Robotics, Automation and Mechatronics.

[24]  Alan Liu,et al.  A Flexible Architecture for Navigation Control of a Mobile Robot , 2007, IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans.

[25]  James J. Kuffner,et al.  Multipartite RRTs for Rapid Replanning in Dynamic Environments , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[26]  Han-Pang Huang,et al.  Relative-Absolute information for simultaneous localization and mapping , 2007, 2007 IEEE International Conference on Robotics and Biomimetics (ROBIO).

[27]  Sebastian Thrun,et al.  Learning Metric-Topological Maps for Indoor Mobile Robot Navigation , 1998, Artif. Intell..

[28]  Jianwei Zhang,et al.  Mechanical Design and Dynamcis of an Autonomous Climbing Robot for Elliptic Half-shell Cleaning , 2007 .

[29]  S.S. Blackman,et al.  Multiple hypothesis tracking for multiple target tracking , 2004, IEEE Aerospace and Electronic Systems Magazine.

[30]  Cristina Urdiales,et al.  A New Efficiency-Weighted Strategy for Continuous Human/Robot Cooperation in Navigation , 2009, IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans.

[31]  Wolfram Burgard,et al.  Learning Motion Patterns of People for Compliant Robot Motion , 2005, Int. J. Robotics Res..

[32]  Henrik I. Christensen,et al.  Evaluation of Passing Distance for Social Robots , 2006, ROMAN 2006 - The 15th IEEE International Symposium on Robot and Human Interactive Communication.

[33]  Wolfram Burgard,et al.  Probabilistic Algorithms and the Interactive Museum Tour-Guide Robot Minerva , 2000, Int. J. Robotics Res..

[34]  Takeo Igarashi,et al.  Sketch and run: a stroke-based interface for home robots , 2009, CHI.

[35]  Wolfram Burgard,et al.  People Tracking with Mobile Robots Using Sample-Based Joint Probabilistic Data Association Filters , 2003, Int. J. Robotics Res..