A multigrid solver for the 3 D Monge-Ampère equation ∗

The elliptic Monge-Ampère equation is a fully nonlinear partial differential equation which has been the focus of increasing attention from the scientific computing community. Fast three dimensional solvers are needed, for example in medical image registration but are not yet available. We build fast solvers for smooth solutions in three dimensions using a nonlinear full-approximation storage multigrid method. Starting from a second-order accurate centered finite difference approximation, we present a nonlinear Gauss-Seidel iterative method which has a mechanism for selecting the convex solution of the equation. The iterative method is used as an effective smoother, combined with the full-approximation storage multigrid method. Numerical experiments are provided to validate the accuracy of the finite difference scheme and illustrate the computational efficiency of the multigrid algorithm. The solution time is almost linear in the number of variables. Problems of size 643 are solved in seconds and of size 1283 are solved in a couple of minutes on a recent model laptop.

[1]  J. Scanlon The Dirichlet problem for nonlinear elliptic equations. , 1955 .

[2]  James M. Ortega,et al.  Iterative solution of nonlinear equations in several variables , 2014, Computer science and applied mathematics.

[3]  D. Brandt,et al.  Multi-level adaptive solutions to boundary-value problems math comptr , 1977 .

[4]  William L. Briggs,et al.  A multigrid tutorial , 1987 .

[5]  G. Barles,et al.  Convergence of approximation schemes for fully nonlinear second order equations , 1990, 29th IEEE Conference on Decision and Control.

[6]  Jun Zhang Fast and High Accuracy Multigrid Solution of the Three Dimensional Poisson Equation , 1998 .

[7]  Murli M. Gupta,et al.  High accuracy multigrid solution of the 3D convection-diffusion equation , 2000, Appl. Math. Comput..

[8]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[9]  Lei Zhu,et al.  Optimal Mass Transport for Registration and Warping , 2004, International Journal of Computer Vision.

[10]  G. Loeper,et al.  Numerical Analysis/Partial Differential Equations Numerical solution of the Monge-Ampère equation by a Newton's algorithm , 2005 .

[11]  Eldad Haber,et al.  Image Registration with Guaranteed Displacement Regularity , 2007, International Journal of Computer Vision.

[12]  Randall J. LeVeque,et al.  Finite difference methods for ordinary and partial differential equations - steady-state and time-dependent problems , 2007 .

[13]  Xiaobing Feng,et al.  Vanishing moment method and moment solutions for second order fully nonlinear partial differential equations , 2007, 0708.1758.

[14]  N. Trudinger,et al.  The Monge-Ampµere equation and its geometric applications , 2008 .

[15]  Adam M. Oberman Wide stencil finite difference schemes for the elliptic Monge-Ampère equation and functions of the eigenvalues of the Hessian , 2008 .

[16]  Gian Luca Delzanno,et al.  An optimal robust equidistribution method for two-dimensional grid adaptation based on Monge-Kantorovich optimization , 2008, J. Comput. Phys..

[17]  Gallagher Pryor,et al.  3D nonrigid registration via optimal mass transport on the GPU , 2009, Medical Image Anal..

[18]  Allen R. Tannenbaum,et al.  An Efficient Numerical Method for the Solution of the L2 Optimal Mass Transfer Problem , 2010, SIAM J. Sci. Comput..

[19]  Adam M. Oberman,et al.  Two Numerical Methods for the elliptic Monge-Ampère equation , 2010 .

[20]  Uriel Frisch,et al.  The Monge-Ampère equation: Various forms and numerical solution , 2009, J. Comput. Phys..

[21]  Adam M. Oberman,et al.  Convergent Finite Difference Solvers for Viscosity Solutions of the Elliptic Monge-Ampère Equation in Dimensions Two and Higher , 2010, SIAM J. Numer. Anal..

[22]  Adam M. Oberman,et al.  Fast finite difference solvers for singular solutions of the elliptic Monge-Ampère equation , 2010, J. Comput. Phys..

[23]  Ke Chen,et al.  A robust multigrid approach for variational image registration models , 2011, J. Comput. Appl. Math..

[24]  J. F. Williams,et al.  An efficient approach for the numerical solution of the Monge-Ampère equation , 2011 .

[25]  Achi Brandt,et al.  Multigrid Techniques: 1984 Guide with Applications to Fluid Dynamics, Revised Edition , 2011 .

[26]  S. C. Brenner,et al.  {C}^0$ penalty methods for the fully nonlinear Monge-Ampère equation , 2011 .

[27]  Gian Luca Delzanno,et al.  Robust, multidimensional mesh-motion based on Monge-Kantorovich equidistribution , 2011, J. Comput. Phys..

[28]  E. Tadmor A review of numerical methods for nonlinear partial differential equations , 2012 .

[29]  S. C. Brenner,et al.  Finite element approximations of the three dimensional Monge-Ampère equation , 2012 .

[30]  Brittany D. Froese,et al.  Application of the Wasserstein metric to seismic signals , 2013, 1311.4581.

[31]  Roland Glowinski,et al.  Recent Developments in Numerical Methods for Fully Nonlinear Second Order Partial Differential Equations , 2013, SIAM Rev..

[32]  Michael Neilan,et al.  Quadratic Finite Element Approximations of the Monge-Ampère Equation , 2012, Journal of Scientific Computing.

[33]  J. H. M. ten Thije Boonkkamp,et al.  A Monge-Ampère-Solver for Free-Form Reflector Design , 2014, SIAM J. Sci. Comput..

[34]  Adam M. Oberman,et al.  Numerical solution of the Optimal Transportation problem using the Monge-Ampère equation , 2012, J. Comput. Phys..

[35]  M. Agueh,et al.  An efficient numerical algorithm for the L2 optimal transport problem with periodic densities , 2015 .